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Abstract

Real-time personalization has advanced significantly in recent years, with platforms utilizing
machine learning models to predict user preferences based on rich behavioral data on each
individual user. Traditional approaches usually rely on embedding-based machine learning
models to capture user preferences, and then reduce the final real-time optimization task to one
of nearest-neighbors, which can be performed extremely fast both theoretically and practically.
However, these models struggle to capture some complex user behaviors, which are essential for
making accurate recommendations. Transformer-based models, on the other hand, are known
for their practical ability to model sequential behaviors, and hence have been intensively used in
personalization recently to overcome these limitations. However, optimizing recommendations
under transformer-based models is challenging due to their complicated architectures. In this
paper, we address this challenge by considering a specific class of transformers, showing its
ability to represent complex user preferences, and developing efficient algorithms for real-time
personalization.

We focus on a particular set of transformers, called simple transformers, which contain a
single self-attention layer. We show that simple transformers are capable of capturing complex
user preferences, such as variety effects, complementarity and substitution effects, and irrational
choice behaviors, which traditional embedding-based models cannot capture. We then develop an
efficient algorithm for real-time personalization under simple transformer models. Our algorithm
achieves near-optimal performance with sub-linear runtime with respect to the size of the item
pool. Finally, we demonstrate the effectiveness of our approach through an empirical study on
large datasets from Spotify and Trivago. Our experiment results show that (1) simple transformers
predict user preferences substantially more accurately than non-transformer baselines and nearly
as accurately as deeper transformer models, and (2) our algorithm completes personalized
recommendation tasks both quickly and effectively. Specifically, under a fixed candidate budget,
our method achieves objective values that are, on average, 20.86% higher than those obtained
using k-Nearest Neighbor and 20.56% higher than those from Beam Search.
Keywords: personalization; transformers; online optimization
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1. Introduction

Personalization today is already immensely sophisticated. Media platforms, online retailers, and
subscription services (just to name a few) capture rich data on their users in the form of their
behavior and interactions with individual items/products. There are then two key ingredients: (1)
this data is used offline to build machine-learning (ML) based models of users’ preferences, and
then (2) these models are used in real-time to make personalized recommendations.

Zooming out from personalization for just a moment, the most jarring improvements in ML
models over the last few years have been in generative models for language, and specifically
transformer-based models (e.g. the “T” in ChatGPT) that have proven to be extremely accurate
in modeling sequential data. Perhaps unsurprisingly, these same models are well-equipped for
personalization. To fix a concrete example, suppose an Instacart user is in the process of shopping
online for groceries. This user’s behavior consists of interactions with grocery items: browsing
through items, viewing a subset of these in more detail, and adding a subset of these to their
shopping cart. The task of learning this user’s preferences essentially amounts to predicting their
future interactions. The important observation here is that the user’s behavior is naturally sequential,
and so this prediction task is similar to completing a sentence, where the “words” are the items
themselves. This connection to language suggests that the same transformer-based models may
succeed in learning preferences.

This is already being done in practice, often with substantial empirical success (e.g. by Alibaba
(Chen et al. 2019), Amazon (Lake et al. 2019), Spotify (Moor et al. 2023), and Wayfair (Mei et al.
2022)). However, as examples of such successes become increasingly common, there is little principled
guidance on how transformers “should” be used for real-time personalization. This is the problem
we seek to address.

Real-Time Personalization, Before Transformers: To make the nature of this problem more
precise, it is worth reviewing how real-time personalization is performed without transformers.
Referring to the two key ingredients mentioned at the outset: first, the ML-based models of user
preferences are, by and large, pure embedding-based models. Using past data, each item i is mapped
to some element vi ∈ Rd in such a way that (a) “similar” items are “close” together, and perhaps
more formally, (b) each user can be represented as some u ∈ Rd so that the inner products v⊤

i u

fully represent the preference/affinity of the user for each item i.
These pure embedding models are not necessarily the most accurate models that can be estimated

from past data, but they enable fast execution of the second ingredient, which is to optimize a set
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(or sequence) of items for each user in real time:

max f(S, u)(1)

s.t. S ⊂ [n], |S| ≤ k.

The (extremely general) formulation above simply highlights that real-time personalization consists
of solving cardinality-constrained set-optimization (or sequence-optimization, whose equivalence to
set-optimization we will discuss later on) problems where (a) the objective function is user-dependent,
(b) the number of items n is potentially quite large – often in the hundreds of millions – and (c) a
solution must be found in real-time, often just milliseconds. This is of course hopeless in general, but
feasible when the objective function f(S, u) results from a pure embedding models. In particular,
f(S, u) typically takes one of two forms:

1. An additive function:
f(S, u) =

∑
i∈S

g(v⊤
i u),

for some non-decreasing function g(·). In this case, the optimal set S∗ can be characterized as
follows: if the number of items i such that g(v⊤

i u) > 0 is no greater than k, then S∗ consists
of all such items. Otherwise, S∗ is the set of k items with the largest values of g(v⊤

i u).

2. A monotone submodular function (in the argument S, for any u), such that each item is fully
encoded by v⊤

i u, so that a constant-factor approximation can be found using greedy-style
algorithms along with (multiple queries to) a black box which computes the item with largest
inner product to a given point in Rd (Farias et al. 2020).

In both of the above cases, the pure embedding model essentially reduces the final real-time
optimization task to one of nearest neighbor algorithms, where the goal is to find the items whose
embeddings are most similar (under inner product similarity) to the user embedding. This task
can be performed extremely fast, both theoretically (using approximate nearest neighbor algorithms
with runtime sub-linear in n) and practically (given the nonstop engineering and improvement of
commercial vector databases).

An Attempt to Introduce Transformers: Returning to transformers now, the natural opportunity
is to improve the accuracy of the pure embedding models in representing user preferences: the
embedding models essentially fail to capture the effects that items may have on each other when
present in the same recommended set. Such effects are well-known to exist in multiple fields of
study, as we will discuss shortly, and often representable via transformers. Unfortunately, the
just-described synergy between the “upstream” user preference model estimated from data, and the
“downstream” optimization of user-dependent sets of items completely breaks down here. As we
will see in the next section, this is true in a formal sense: Problem (1) is NP-hard, and likely hard
to even approximate in linear time, if the objective f(·, u) is transformer-based. As of now, any
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practical implementation using transformers either applies a pure nearest-neighbor or greedy-style
algorithm (essentially ignoring this hardness), or a random search heuristic (such as Beam Search).

In the spirit of developing a principled approach to transformer-based real-time personalization,
this raises two major questions:

1. Fast Optimization: The formal hardness results just alluded to imply that achieving fast
(ideally sub-linear in n) optimization of Problem (1) with any meaningful optimality guarantee
is impossible if the objective f(·, u) is to allow for all transformers. Naturally then, is there a
non-trivial sub-class of transformers for which this is possible?

2. Modeling Power: Assuming a positive answer to the first question, i.e. assuming the
existence of a subset of transformers which enable fast optimization, does restricting to this
subset come at a substantial cost in terms of modeling user preferences? Put another way,
can this smaller sub-class of transformers achieve the same predictive accuracy as the family
of all transformers?

1.1. Our Contributions

In short, our contributions provide concrete, theoretically-backed answers to both of the above
questions:

Modeling User Preferences with Simple Transformers. We focus our study on a sub-class of
transformers that we refer to as simple transformers. These are transformers which contain a
single self-attention layer (to be defined in the next section), whereas transformers as a whole may
contain multiple attention layers. Addressing the pair of questions above in reverse, we first formally
show that simple transformers are able to represent two known, popular parametric models of user
preference (Proposition 5):

• Sequential variety effects in the context of marketing;

• Pairwise complementarity and substitution effects in the context of economics.

It should also be emphasized that none of these models are representable via pure embedding
models.

Real-Time Personalization with Simple Transformers. Our main result (Theorem 1) is an
algorithm (Algorithm 1) which approximately solves Problem (1) in sub-linear time, when the
objective function is given by a simple transformer:

Theorem 1 (Informal). Under additional (rank) assumptions on the simple transformer, given any
n, k ∈ N and ϵ > 0, there exists an algorithm that achieves ALG ≥ (1 − ϵ)OPT with expected
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amortized runtime
Õ
(
n1−c(ϵ,k) · kµ(ϵ)

)
for functions c, µ satisfying c(ϵ, k), µ(ϵ) > 0. Here Õ hides factors of order no(1).

We will present and discuss the rank assumptions in Section 2.5. We also show that these
assumptions are necessary for approximately solving Problem (1) in sublinear time (Proposition 6
and Proposition 11), and that our algorithm’s expected amortized runtime dependence on k and ϵ

is optimal (Proposition 11).
Our algorithm operates under the same two-phase retrieval and ranking paradigm that is used

in many competition-winning personalization algorithms, though in our case both phases are
adapted specifically to simple transformers, and enjoy provable guarantees (the combination of
which generates our main result). Our algorithm has the added practical benefit of subsuming (given
a particular, sub-optimal selection of tuning parameters) the Beam Search algorithm commonly
used in practice.

Empirical Study. We empirically validated the theoretical results of the previous contributions
on two large datasets from Spotify (Chen et al. 2018) (which includes 1, 000, 000 playlists with
2, 262, 292 unique songs) and the travel website Trivago (Knees et al. 2019) (which includes user
sessions of searching for hotel bookings, with around 730, 000 unique users and around 340, 000
unique hotels recorded in around 900, 000 different sessions).

In support of the first contribution, our first set of experiments demonstrates that, given data
on past user behavior, simple transformers can effectively model and predict user preferences. They
achieve (a) substantially higher accuracy than non-attention-based models (such as pure embedding
models), and (b) performance that is nearly comparable to more complex transformer architectures.
Specifically, simple transformers achieved, on average, 14.1% higher accuracy than non-attention
models (e.g., logistic regression, random forest, support vector machine), and only 2.5% lower
accuracy than general transformers with multiple self-attention layers.

In support of the second contribution, our second set of experiments demonstrates that our
algorithm performs simple-transformer-based personalized recommendation tasks both efficiently
and effectively. We solved instances of Problem (1) using the simple transformers trained in the first
set of experiments and compared our algorithm to two widely used benchmark methods: k-Nearest
Neighbor (for retrieval) and Beam Search (for ranking). Under a fixed candidate solution budget
(to partially standardize runtime), our algorithm achieved objective values that were, on average,
20.86% higher than those obtained using k-Nearest Neighbor and 20.56% higher than those obtained
using Beam Search. Therefore our algorithm achieved strong empirical performance in both the
retrieval and ranking phases.
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1.2. Literature Review

Transformers in Recommender Systems. Recommender systems have significantly evolved with
the emergence of transformer-based architectures, first introduced by Vaswani (2017). Transformers’
ability to model long-range dependencies and efficiently process sequential data makes them
particularly well-suited for capturing user-item interaction sequences. They have been successfully
adopted in practice by companies such as Alibaba (Chen et al. 2019), Amazon (Lake et al. 2019),
Spotify (Moor et al. 2023), and Wayfair (Mei et al. 2022), among others. A large body of work has
focused on designing specialized transformer-based architectures for recommendation tasks. These
include self-attention-based sequential models like SASRec (Kang and McAuley 2018, Mei et al.
2022, Wilm et al. 2023), single-layer attention models (Wang et al. 2018, Chen et al. 2019, Bendada
et al. 2023, Celikik et al. 2022), multi-head or multi-layer self-attention models (Yang et al. 2023,
Zheng et al. 2023), neural attention mechanisms (Chen et al. 2017, Fu et al. 2018, Lake et al. 2019),
recurrent attention models (Sukhbaatar et al. 2015), and sparse attention mechanisms (Li et al.
2023). In contrast, our work focuses on the optimization task that follows once the transformer
architecture has been established. Specifically, we consider architectures with a single attention
layer–an approach that is both prominent and empirically successful in recommender systems–and
aim to make fast and near-optimal recommendations based on these models.

Representational Power of Transformers. Transformer architectures are built on the self-attention
mechanism, which endows them with strong representational power in both theory and practice.
Having discussed practical aspects above, we now review theoretical results. Yun et al. (2019) and
Wei et al. (2022) proved universal approximation results, showing that sufficiently large transformers
can approximate broad classes of functions, analogous to results for feedforward networks (Hornik
et al. 1989). Pérez et al. (2019) and Wei et al. (2022) further established the (approximate) Turing-
completeness of transformers. Sanford et al. (2024b) gave both positive and negative results: they
introduced a sparse averaging task where transformers scale logarithmically with input size (unlike
recurrent or feedforward networks, which scale polynomially), but also a triple detection task where
attention scales linearly. Similar negative results were shown for induction heads by Sanford et al.
(2024a), Bietti et al. (2024), Elhage et al. (2021).

For recommender systems, the most relevant work connects representational power to choice
modeling. Ko and Li (2023) showed that classic choice models such as Halo-MNL can be represented
by a single attention layer, and Wang et al. (2023) developed a transformer architecture for
learning and predicting many choice models. In our work, we demonstrate that a single attention
layer can also capture user preference models involving sequential variety effects and pairwise
complementarity/substitution.
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Approximate Nearest Neighbor. Approximate nearest neighbor (ANN) is a key tool for real-time
personalization, where a system must quickly retrieve relevant items from embeddings. The classical
nearest neighbor (NN) search is computationally intractable at scale, especially in high dimensions,
motivating efficient approximation algorithms. ANN returns near-optimal results with much lower
query time and storage, making it well-suited for real-time personalization.

Several algorithmic frameworks exist. Hashing-based methods, such as Locality-Sensitive Hashing
(LSH) (Indyk and Motwani 1998, Andoni and Indyk 2008, Andoni et al. 2015), provide sub-linear
query time under specific metrics. Graph-based methods construct proximity graphs (e.g., navigable
small-world graphs) for efficient traversal (Malkov and Yashunin 2018). Tree-based methods such as
KD-trees and Ball Trees are effective in low dimensions but deteriorate as dimensionality grows
(Muja and Lowe 2014). In our work, ANN enables fast identification of items likely to interest a
user, allowing our algorithm to run in real time.

Binary Quadratic Optimization. With transformer architectures, the recommendation task can
be cast as a binary quadratic optimization problem (quadratic knapsack), which is NP-hard and
subsumes many difficult problems, including maximum clique and densest k-subgraph. Moreover, it
is NP-hard to approximate within any finite factor (Rader Jr and Woeginger 2002). Much of the
literature therefore studies tractable special cases: Rader Jr and Woeginger (2002) gave an FPTAS
for series-parallel graphs, while Taylor (2016) developed an FPTAS for bounded-treewidth graphs
and a PTAS for planar graphs. For surveys, see Pisinger and Toth (1998), Cacchiani et al. (2022).

In our setting, we exploit the low non-negative rank of the softmax matrix to obtain a PTAS.
Related work on low-rank optimization includes: an FPTAS for minimizing quasi-concave functions
over convex sets (Goyal and Ravi 2013), an FPTAS for low-rank functions over polytopes (Mittal
and Schulz 2013), and a PTAS for binary non-linear programs with low-rank objectives (Nguyen
and Elbassioni 2021). Our problem differs in requiring low non-negative rank, for which we refer to
Cohen and Rothblum (1993). Owing to the specific structure of the softmax matrix, prior results
do not directly apply. Our approach is also related to the multi-objective knapsack problem, where
FPTAS algorithms compute the Pareto frontier (Elhage et al. 2021, Bazgan et al. 2009a,b).

2. Model

2.1. Real-Time Personalization without Transformers

Pure Embedding Models. Before introducing the transformer-based models that will be the focus
of this paper, we begin with a brief overview of pure embedding models, which are widely used in
modern personalization systems. These models represent users and items as vectors in a shared
low-dimensional space, enabling efficient modeling of interactions via simple operations such as the
inner product.
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Formally, let [n] ≡ 1, . . . , n denote a set of items, and let V ∈ Rn×d be a matrix whose i-th row
v⊤

i ∈ Rd is the value vector of item i. These value vectors are designed so that items with similar
embeddings are likely to be perceived similarly by users. Each user is likewise represented by a user
vector u ∈ Rd. Both the item and user vectors are typically learned from historical interaction data
– through matrix factorization, collaborative filtering, or more complex models trained on click or
engagement feedback.

The utility (or reward) of recommending item i to user u is modeled as fi(v⊤
i u), where fi : R→ R

is a non-decreasing reward function specific to item i. In many applications, the same function f is
used for all items. However, in some cases it is important to allow heterogeneous reward functions
that reflect item- or category-specific behavior. For example, different product categories often
exhibit different click-through-rate (CTR) saturation patterns: a small increase in relevance (e.g.,
v⊤

i u) might sharply increase CTR for breaking news articles, whereas product ads might exhibit
more gradual, linear gains, and fashion items may plateau early due to browsing behavior. Modeling
such differences requires different shapes of the function fi, even if all are monotonic. To maintain
full generality, we therefore allow each item to have its own reward function fi. Moreover, in many
applications the image of fi is often [0, 1], in which case fi(v⊤

i u) can be interpreted as the probability
of a positive user action, such as a click or purchase. In these cases, fi is sometimes chosen to
resemble functions like the logistic function.

One of the key advantages of pure embedding models is the efficiency of real-time personalization.
Given a user vector u and a budget k, the goal is to select a subset S ⊂ [n] of at most k items that
maximizes the total reward:

max
∑
i∈S

fi(v⊤
i u)(Pure Embedding)

s.t. S ⊂ [n], |S| ≤ k.

Since the objective function is additive and the items are treated independently, this problem
can be solved exactly via nearest neighbor. In our setting, this corresponds to identifying the k

items whose value vectors are most aligned with the user vector u under inner product similarity.
That is, for a query u ∈ Rd, the goal is to find the top-k items maximizing v⊤

i u.
Nearest neighbor arises in many applications across recommendation, vision, and language,

where one often needs to retrieve items similar to a given input based on some feature representation.
A naive solution evaluates all n inner products v⊤

i u, which takes O(nd) time. In our case, we
compute fi(v⊤

i u) for every i ∈ [n], and then select the top k items with the largest values. The
optimal solution S∗ can be described as follows: if there are at most k items with positive reward
(i.e., fi(v⊤

i u) > 0), then S∗ includes all of them. Otherwise, S∗ consists of the k items with the
largest values of fi(v⊤

i u). This greedy procedure yields an exact solution in linear time with respect
to the total number of items.
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Algorithms: Approximate Nearest Neighbor. The greedy implementation of nearest neighbor
becomes computationally prohibitive as the number of points n grows. In most applications such
as personalization tasks, the number of items n is on the scale of millions, and an algorithm with
runtime linear in n cannot be performed in real-time. To address this problem, the notion of
approximate nearest neighbor (ANN) has been widely adopted. Rather than finding the exact
nearest point, ANN aims to return a point whose distance to the query is within a factor of the
true minimum. Formally, for an additive approximation factor ϵ > 0, the objective of ϵ-ANN is to
find any point vi∗ , where i∗ ∈ [n], that approximately maximizes the inner product similarity to the
query u:

v⊤
i∗u ≥ arg max

i∈[n]
v⊤

i u− ϵ.

This relaxation enables much more efficient data structures and algorithms – often sub-linear in
n – which can be implemented in real-time. 1 Various techniques have been applied to ϵ-ANN
algorithms. For example, Andoni et al. (2015) gives an ϵ-ANN algorithm by using Locality-Sensitive
Hashing:

Proposition 1 (Corollary 1 in Andoni et al. (2015)). For any given ϵ > 0, ϵ-ANN on the unit sphere
Sd−1 ⊂ Rd can be solved with expected amortized runtime O(dnγ(ϵ)), where γ(ϵ) = 1

1+cϵ + o(1), where
c > 0 is a universal constant.

Ailon and Chazelle (2009) gives an ϵ-ANN algorithm by applying fast Johnson-Lindenstrauss
transform (FJLT):

Proposition 2 (Theorem 1 in Ailon and Chazelle (2009)). For any given ϵ > 0, ϵ-ANN on the unit
sphere Sd−1 ⊂ Rd can be solved with expected amortized runtime O

(
d log(d) + ϵ−3 log2(n)

)
.

Arya et al. (1998) gives an ϵ-ANN algorithm by using a tree-based data structure:

Proposition 3 (Theorem 3.1 in Arya et al. (1998)). For any given ϵ > 0, the ϵ-ANN on the unit
sphere Sd−1 ⊂ Rd can be solved with expected amortized runtime O(log n + 1/ϵd).

Because companies aim to recommend a set of at most k items to a user in their personalization
task, their objective is not merely to identify a single item that is attractive to the user, but rather
to efficiently retrieve a set of k items that are collectively among the most attractive to the user.
Therefore, they consider the notion of ϵ-Approximate k-Nearest Neighbor, which returns a set of k

items whose inner product similarities are within an additive error of ϵ compared to the top-k true
nearest items. This is formally defined below.

Definition 1 (ϵ-Approximate k-Nearest Neighbor Algorithm). An ϵ-Approximate k-Nearest Neighbor
algorithm builds a data structure on any given set of points {v1, . . . , vn} ⊂ Rd, and takes any query

1There are also other versions of ϵ-ANN that concerns multiplicative approximation factors instead of additive
ones. These two notions are equivalent under some boundedness assumptions on the points.
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u ∈ Rd, any 1 ≤ k ≤ n, and any ϵ > 0 as inputs. Let π : [n]→ [n] be a permutation of the indices
such that v⊤

π(1)u ≥ · · · ≥ v⊤
π(n)u. Let (i∗

1, . . . , i∗
k) = (π(1), . . . , π(k)). The oracle outputs k indices

i1, . . . , ik ∈ [n] such that v⊤
ij

u ≥ v⊤
i∗
j
u − ϵ for each j = 1, . . . , k with expected amortized runtime

k-ANN(n, d, k, ϵ).

Many ϵ-ANN algorithms can be naturally modified to ϵ-Approximate k-Nearest Neighbor
algorithms, with a similar expected amortized runtime, that is, sub-linear in n. As an example, we
give an ϵ-Approximate k-Nearest Neighbor algorithm in Appendix A.

Lemma 1. There exists an ϵ-Approximate k-Nearest Neighbor algorithm, which we give in Appendix
A, with expected amortized runtime

k-ANN(n, d, k, ϵ) = O
(
k(d log(d) + ϵ−3 log2(n))

)
.

Finally, companies apply any given ϵ-Approximate k-Nearest Neighbor algorithm to approxi-
mately solve Problem (Pure Embedding). This can be done by first partitioning the items according
to their reward functions fi. For each partition, they apply an ϵ-Approximate k-Nearest Neighbor
algorithm to identify k items that are collectively among the most attractive to the user within that
partition. They then evaluate the rewards of all such candidate items across partitions and select
the top-k items with the highest overall reward.

To analyze the approximation error incurred by this procedure, we introduce the following
parametrization of the reward functions. For all i ∈ [n] and ϵ > 0, the function fi satisfies:

fi(x− ϵ) ≥ (1− g(ϵ))fi(x)− h(ϵ) for all x,

where 0 ≤ g(ϵ) ≤ 1 and h(ϵ) ≥ 0 are non-negative functions of ϵ. This parametrization captures the
idea that a small additive error in the input x leads to a controlled multiplicative and additive error
in the output fi(x).

This parametrization captures the behavior of many reward functions commonly used in practice.
In particular, we make the following observation:

Observation 1. If fi(·) is non-decreasing and L-Lipschitz, then it satisfies the above condition with
g(ϵ) = 0 and h(ϵ) = Lϵ. In particular, many standard reward functions (also referred to as activation
functions in machine learning), such as logistic, ReLU, leaky ReLU, PReLU, tanh, and softplus,
satisfy this condition with g(ϵ) = 0 and h(ϵ) = O(ϵ).

With this parametrization, we can now state our main result on applying ANN algorithms to
real-time personalization with pure embedding models. We begin by introducing notations that
will be used throughout the paper. For an optimization problem P with objective function fP, let
x∗

P denote an optimal solution and define OPTP = fP(x∗
P) as its optimal value. For an algorithm
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ALG applied to P, let xALG
P be the solution returned by ALG, and set ALGP = fP(xALG

P ) to be the
corresponding objective value.

Proposition 4. Suppose we have an ϵ-Approximate k-Nearest Neighbor algorithm with expected
amortized runtime k-ANN(n, d, k, ϵ), and suppose k-ANN(n, d, k, ϵ) is concave in n. Let τ be the
number of distinct functions among f1, . . . , fn. Given any ϵ > 0, we give an algorithm ALG for
solving Problem (Pure Embedding) that satisfies

ALGPure Embedding ≥ (1− g(ϵ))OPTPure Embedding − kh(ϵ).

with expected amortized runtime

τ · k-ANN
(

n

τ
, d, k, ϵ

)
+ log2(τk).

The proof of Proposition 4 appears in Appendix A. Notice that many ϵ-Approximate k-Nearest
Neighbor algorithms have k-ANN (n, d, k, ϵ) sub-linear and concave in n, and we have given an
example in Lemma 1. Therefore Problem (Pure Embedding) can be approximately solved in sub-
linear time, which is practical to implemented in real-time.

Modeling Limitations. Proposition 4 shows that pure embedding models can be optimized efficiently.
However, pure embedding models have a fundamental limitation: they treat each item independently
and fail to capture how the value of an item may depend on the context in which it is presented.
That is, the reward associated with item i is fixed once u and vi are known, regardless of what
other items are presented alongside it. In many personalization applications, this is an unrealistic
assumption. For example, the value of a song recommendation may drop if a similar song is already
in the playlist; or the likelihood a user clicks on a hotel result may depend on what other hotels
appear in the same search result page and how they compare. These effects, often referred to as
set effects, are not captured by pure embedding models. Concretely, we present three common
parametric models used in personalization that cannot be represented by pure embedding models.

First, we consider a famous parametric model of sequencial variety effects in sequences. The
concept of variety/diversity has been examined extensively in the marketing literature (see e.g.
McAlister (1982), Hoch et al. (1999), Rafieian (2023)). This model proposes that the perceived utility
of an item depends not only on its intrinsic quality but also on its novelty relative to previously
seen items. In particular, repeated exposure to similar items leads to diminishing marginal utility,
while introducing diverse or contrasting items can restore or amplify engagement. This intuition
aligns closely with the notion of discounted utility over sequences, where the utility derived from an
item is multiplicatively reduced based on its similarity to past items (see, e.g. Barberà et al. (2004),
Baucells and Sarin (2007)). Such models capture behavioral tendencies like satiation, boredom,
and the desire for exploration, and have been influential in both economic theory and practical
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recommendation systems. Below we give a mathematically formulation of sequential variety effects.

Model 1 (Sequential Variety Effects). Let [n] := {1, . . . , n} denote the set of items. Each item i has
a base utility ûi > 0 and a similarity embedding xi ∈ Sd−1. Define pairwise similarity score between
item i and item j by sij := x⊤

i xj ∈ [−1, 1]. Fix a sequence length k ≥ 1 and nonnegative lag weights
λ1, . . . , λk−1 ≥ 0.

For a sequence S = (i1, . . . , ik) of length k, the sequential–variety–adjusted utility of the item at
position t is

g(S, it) = ûit exp
(

β
t−1∑
ℓ=1

λℓ s it, it−ℓ

)
, t = 1, . . . , k,

where β ∈ R controls the strength and sign of the variety effect. 2

Model 1 adjusts the context-free utility ûit multiplicatively according to the similarity between
the current item and recently shown items, with older influences discounted by λℓ. When β < 0
(preference for variety), similarity to recent items (sij > 0) decreases the current utility, while
dissimilarity (sij < 0) increases it; when β > 0 (preference for continuity), the effect reverses and
thematic similarity boosts utility. The weights λℓ specify the memory profile: choosing λℓ = ρℓ with
ρ ∈ (0, 1) yields exponential decay in influence with lag, whereas setting λ1 > 0 and λℓ = 0 for ℓ > 1
recovers a one-step effect based only on the immediate predecessor. The exponential factor ensures
g(S, it) > 0 and provides a smooth, multiplicative adjustment driven by recent sequence context.

Second, we consider a model of pairwise complementarity and substitution effects. In economics,
these effects describe how the presence of one item influences the desirability of another: comple-
mentary items enhance each other’s attractiveness, while substitutes reduce it. A common modeling
approach represents items as vectors in a feature space, with pairwise interactions captured via
inner products (see, e.g., Lee et al. (2013), Berry et al. (2014), Ruiz et al. (2020)).

Model 2 (Pairwise Complementarity and Substitution Effects). Let [n] denote the set of items. Each
item i has a value vector v̂i ∈ Rd. The pairwise complementarity and substitution effects is
parametrized by a matrix H ∈ Rn×n where Hii = 0 for every i ∈ [n]. For a user û ∈ Rd and a subset
of items S ⊂ [n], the interaction-adjusted utility of item i ∈ S is defined as

g(S, i) = v̂⊤
i û +

∑
j∈S

Hij .

In Model 2, the value vector v̂i captures the intrinsic preference of the user u for item i,
independent of any other items shown. The matrix H encodes all pairwise interaction effects
between items: a positive entry Hij means that the presence of item j increases the utility of item i

(complementarity), while a negative entry Hij means that the presence of j reduces the utility of i

2By convention, the empty sum equals 0, so g(S, i1) = ûi1 .
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(substitution). The diagonal entries are zero by definition, so an item does not directly influence its
own utility. When Hij = 0, item j has no effect on the utility of item i.

Model 2 is also closely related to choice models that generate conversion probabilities. Choice
models are a fundamental input to many now-canonical optimization problems in the field of
operations management, including assortment, inventory, and price optimization. At a high level, a
choice model maps an offer set S ⊂ [n] to conversion probabilities {p(i | S)}i∈S that sum to one.
Interpreting g(S, i) from Model 2 as an unnormalized log-weight, a choice model can naturally
set purchase probabilities proportional to exp(g(S, i)). This precisely recovers a particular type of
choice model, called the Halo Multinomial Logit (Halo MNL) choice model (Maragheh et al. 2018).

The Halo MNL choice model is a generalization of the simplest and most widely used multinomial
logit (MNL) choice model, which assumes that customers choose among a set of items according
to a fixed utility associated with each option. While the MNL choice model provides a tractable
and interpretable framework, it has well-known limitations, such as the independence of irrelevant
alternatives property, which can fail to capture context-dependent or irrational choice behaviors
observed in practice. The Halo MNL choice model addresses this by allowing the utility of each
item to depend on the presence or absence of other items in the offered set. In particular, certain
items can impose a positive or negative “halo effect” on the utility of other items, enabling the
model to capture behaviors that violate classical rationality assumptions.

The halo effect is completely parametrized by a matrix H ∈ Rn×n, where each off-diagonal
entry Hij quantifies the halo effect that the presence of item j imposes on the utility of item i:
positive values capture complementarity (item j makes i more attractive), while negative values
capture substitution (item j detracts from i). Crucially, these interactions are precisely represented
by Model 2: the interaction-adjusted scores serve as the weights of the conversion probabilities.
Normalizing these weights over the offered set (e.g., via a softmax) yields the Halo MNL choice
model with parameter H. Moreover, when H is the zero matrix, there are no interaction terms and
the normalization reduces to the standard MNL choice model. Therefore the MNL choice model is
a special case nested within our framework.

Because in both models the reward associated with an item can depend on the presence or
absence of other recommended items, we make the (informal) observation that these models cannot
be represented by pure embedding models. In contrast, we will later show that both models can be
naturally expressed within the framework we study in this paper.

2.2. Simple Transformers

In this section, we formally state the model which will be our primary object of study: simple
transformers, or neural networks with a single self-attention layer. First, some preliminary definitions:
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the row-wise softmax operator, which we denote as softmax : Rn×d → Rn×d, is given by

softmax(A)i,j = exp(Ai,j)∑d
j′=1 exp(Ai,j′)

.

In particular, each row of softmax(A) sums up to 1, and can be interpreted as a vector of weights.
The notion of attention is fundamental to transformer-based models (e.g. Vaswani (2017), Sanford
et al. (2024b)). For input dimension n, output dimension dv, embedding dimension dkq, and matrices
Q, K ∈ Rn×dkq , and V ∈ Rn×dv , a self-attention layer is a function SAQ,K,V : Rn×n → Rn×dv given
by

SAQ,K,V (X) = softmax((XQ)(XK)⊤)XV.

Here, the matrices Q, K, and V are often called the query, key, and value matrix, respectively.
To better understand the self-attention layer, it is natural to view it as a function on subsets

of items. Let [n] denote a set of items. Then the self-attention layer is fully parameterized by an
individual query, key, and value vector for each item (forming the rows of the respective matrices Q,
K, and V ). For any subset S ⊂ [n], we define the set-membership matrix XS ∈ {0, 1}n×n by

(XS)ii =

1, i ∈ S,

0, i /∈ S.

The function SAQ,K,V (·) is then applied to XS . The output is an n× dv matrix in which each row
i ∈ [n] is interpreted as follows:

• If i ∈ S, then the i-th row is a weighted average of the value vectors {vi : i ∈ S}, where the
weight on each vi is given by the softmax-normalized dot product between the query vector qi

and the key vector kj for j ∈ S.

• If i /∈ S, then the i-th row is the uniform average of the value vectors {vi : i ∈ S}. This is
because item i’s query vector is zeroed by XS – that is, (XSQ)i is the zero vector – and thus
assigns equal softmax weight to all items in S.

Transformers are a broad family of functions (also known as neural networks) constructed by
repeatedly applying self-attention layers along with simple transformations that operate indepen-
dently on each item. These point-wise transformations typically consist of linear mappings followed
by non-linear functions known as activation functions, which introduce flexibility and allow the
model to capture complex behaviors. In our context, these activation functions can be naturally
interpreted as the reward functions fi, representing how the utility of each item responds to its
input.

Simple transformers are a subclass of transformers with a single self-attention layer, followed by
point-wise activation functions fi. Formally, we define them as follows:
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Definition 2 (Simple Transformer). For matrices Q, K ∈ Rn×dkq and V ∈ Rn×dv , a vector u ∈ Rdv ,
and non-decreasing activation functions f1, . . . , fn : R → R, a simple transformer is a function
TQ,K,V,f1,...,fn,u : Rn×n → Rn given by

TQ,K,V,f1,...,fn,u(X) =


f1
(
SAQ,K,V (X)⊤

1 u
)

f2
(
SAQ,K,V (X)⊤

2 u
)

...
fn

(
SAQ,K,V (X)⊤

n u
)

 .

As a side note, a simple transformer can also include multiple attention heads, in which case
several self-attention layers are computed in parallel – each called an attention head – using different
learned Q, K, and V matrices. The outputs of all attention heads are then concatenated and passed
through point-wise transformations. Equivalently, a simple transformer with multiple attention
heads can be written as one with a single head by arranging each Q, K, and V in block form. All
of our results extend naturally to this setting. For clarity of notation, however, throughout this
paper we focus on simple transformers with a single attention head, as defined above.

2.3. Modeling Power

Simple transformers are already used extensively in personalization (Wang et al. 2018, Chen et al.
2019, Bendada et al. 2023, Celikik et al. 2022), but other more-sophisticated transformers with
multiple self-attention layers are also used. This raises a key question: to what extent can simple
transformers effectively model user preferences?

To address this, we begin by building intuition for how simple transformers operate in the
personalization context. A simple transformer can be interpreted as modeling the interaction
between a user and a set of recommended items, while also capturing pairwise interactions among
the items themselves – commonly referred to as “set effects”. To illustrate this, consider a concrete
example from recommender systems, where the index set [n] represents a set of n items, and a
subset S ⊂ [n] is selected to be recommended to a user u ∈ Rdv . The matrix V ∈ Rn×dv contains
the value vectors, where each row v⊤

i encodes information relevant to item i when considered in
isolation. Indeed, when S = {i} is a singleton, the output of the self-attention layer is simply vi,
and the final reward obtained by recommending item i to the user u is given by fi(v⊤

i u).
However, when |S| > 1, for each i ∈ S the self-attention layer transforms each value vector vi

into a convex combination of the value vectors {vj : j ∈ S}, where the weights of the combination are
determined by the similarity between the query vector qi and key vectors {kj : j ∈ S}, computed via
the softmax of inner products. That is, the weights are given by the vector softmax((XSQ)(XSK)⊤)i.
Intuitively, the query vector qi for item i captures how the presence of other items in S influences the
transformation of value vector vi, while the key vector kj for item j captures how item j contributes
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to the transformation of other items’ value vectors. The resulting vector, SAQ,K,V (XS)i, is then
projected onto the user vector u and passed through the item-specific reward function fi. Therefore,
final reward obtained by recommending item i to the user u is given by fi(SAQ,K,V (XS)⊤

i u), which
is precisely the i-th coordinate of TQ,K,V,f1,...,fn,u(XS).

Importantly, this formulation is inherently permutation invariant, as the set structure of S does
not impose any order on its elements. Sequence models, which require order-sensitive representations,
can be accommodated by enriching the matrices Q, K, and V with additional positional encodings
that inject information about each item’s position in an ordered sequence. These positional encodings
act like tags that describe each item’s position in the sequence, allowing the model to distinguish
between, for example, an item that appears first and one that appears last – even if the items
themselves are otherwise identical. In this way, sequential structure is modeled within the same
framework as set-based interactions.

Having discussed how simple transformers operate in the personalization setting, we now examine
their ability to model user preferences. While our later experiments will empirically demonstrate
that restricting the architecture to a single attention layer results in only a modest reduction in
modeling/predictive power, we begin by supporting this claim through an analysis of the two
common parametric models used in personalization presented in the previous section. We have
already seen that these two models cannot be represented by pure embedding models. On the
contrary, below we show that both of them can be represented by simple transformers.

Proposition 5. The sequential variety effects in Model 1 and the complementarity and substitution
effects in Model 2 can both be represented by a simple transformer.

The proof of Proposition 5 appears in Appendix B.

Aside: Graph interpretation of self-attention layers. It is useful to view a self-attention layer
through a graph lens. Let

W = softmax
(
(XQ)(XK)⊤) ∈ Rn×n.

Because each row of W sums up to one, W can be interpreted as the weighted adjacency matrix
of a directed graph on [n], with edge weight i→ j equal to Wij . Then a single self-attention layer
performs one round of information passing:

SAQ,K,V (X)i =
n∑

j=1
Wij (XV )j ,

i.e., vertex i aggregates value vectors from its (out-)neighbors according to the edge weights in W .
This perspective also clarifies what stacking self-attention layers does – and does not do. For

ℓ = 1, 2, define

W (ℓ) = softmax
(
(XQ(ℓ))(XK(ℓ))⊤), H(1) = W (1)(XV (1)), H(2) = W (2)(H(1)V (2)),
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where we ignore point-wise activations functions for intuition. Expanding H(2) shows that information
propagate along two-hop paths:

H
(2)
i =

n∑
j=1

W
(2)
ij H

(1)
j =

n∑
j=1

n∑
k=1

W
(2)
ij W

(1)
jk

(
XV (1)V (2))

k
,

so the contribution of vertex k to vertex i through vertex j factorizes as W
(2)
ij W

(1)
jk . This is a

composition of two pairwise interactions, not an arbitrary triplet interaction. Indeed, representing a
general triplet interaction requires Θ(n3) free parameters, whereas two self-attention layers only
provide 2n2 free parameters. Therefore, stacked self-attention layers naturally model multi-hop
effects rather than unrestricted set interactions.

2.4. Optimization

The primary purpose of this paper is to study the problem of personalizing a set (or sequence,
equivalently) of items in real-time, where the underlying model of user preferences is given by a simple
transformer. Following the setup and terminology in the previous subsections, let [n] index a set of
items, for which the query, key, and value matrices Q, K ∈ Rn×dkq and V ∈ Rn×dv are fixed in advance
(these should be thought of as having been learned from prior data). Each user is represented by a
vector u ∈ Rdv in the same space as the value vectors. For a given set S ⊂ [n], the simple transformer’s
output that corresponds to item i ∈ S is given by TQ,K,V,f1,...,fn,u(XS)i = fi(SAQ,K,V (XS)⊤

i u).
Intuitively, this can be thought of as the reward obtained from recommending item i. As a user
arrives, our goal is to choose a set S ⊂ [n] of at most k items that maximizes the total reward.
Formally, the optimization problem we study is:

Definition 3 (Simple-Transformer Based Recommendations).

max
∑
i∈S

fi(SAQ,K,V (XS)⊤
i u)(Main)

s.t. S ⊂ [n], |S| ≤ k.

Let OPT denote the optimal objective value of Problem (Main). Notice that if S = ∅ – that is,
if nothing is recommended to the user – then the objective value of of Problem (Main) equals to 0.
Therefore OPT ≥ 0. To ensure that Problem (Main) is meaningful, from now on we assume that
OPT > 0, since otherwise the best decision would be recommending nothing.

2.5. Hardness

As a starting point toward solving Problem (Main), observe that it can be solved exactly in O(nkk2)
time via brute-force evaluation of all feasible solutions. As mentioned earlier, we are motivated by
settings in which the number of items n is extremely large (possibly hundreds of millions), and
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Problem (Main) must be solved in real time (possibly milliseconds). Thus, our goal will be to find an
algorithm, potentially approximate rather than exact, whose runtime is sub-linear in n, i.e., O(nγ)
for some γ < 1. Moreover, while the budget on the number of items to recommend, k, is typically
moderate in practice (often around ten), exponential dependence on k would still be impractical to
be implemented in real time. Therefore, our algorithm’s runtime should also be polynomial in k.

Before proceeding, it is useful to present some initial hardness results to temper our expectations.
We provide two sets of results. The first addresses the requirement of sub-linear runtime in n, with
hardness parametrized by dkq, the dimension of the key and query vectors. The second addresses
the requirement of polynomial runtime in k, with hardness parametrized by the non-negative rank
of the matrix softmax(QK⊤), denoted as rank+(W ).

Hardness Parametrized by dkq. We first present a proposition that reduces Problem (Main) to
graph problems involving cliques, and then discuss its implications.

Proposition 6.
(a) If dkq = n and k ≥ 4, then Problem (Main) subsumes the (k − 1)-Clique problem 3 on graphs

with n− 1 vertices.

(b) For any constant M ≥ 3, there exists a number c(M) > 0 for which the following holds. For
any dkq such that exp(c(M) · dkq) ≤ n− 1 and any k ≥M + 1, Problem (Main) subsumes the
problem of finding a largest clique in a graph with

• n− 1 vertices,

• exp(c(M) · dkq) disjoint cliques,

• and all cliques have size at least k −M and at most k − 1.

The proof of Proposition 6 appears in Appendix C. Proposition 6 implies concrete limitations
on the theoretical results we can expect for solving Problem (Main):

• By Proposition 6 (a), Problem (Main) inherits the hardness of the k-Clique problem, which
is known to be NP-hard (when k is allowed to grow with n) (Karp 2010). Thus, we should
not expect to find an exact algorithm which runs in O(nC) for some C > 0 independent of k.

• Even treating k as a constant, it is known (Chen et al. 2006) that even an O(no(k)) exact
algorithm cannot exist assuming Exponential Time Hypothesis holds.4 Thus, absent additional
assumptions, we can only expect to approximately solve Problem (Main) in sub-linear time
with respect to n.

3For a (undirected, unweighted) graph, the k-Clique problem requires deciding if a clique of size k exists, and
finding one if so.

4The Exponential Time Hypothesis (ETH) asserts that the 3Sat problem cannot be solved in sub-exponential
time. For a Boolean formula in conjunctive normal form with exactly three literals per clause, the 3Sat problem
requires deciding if there exists a truth assignment to the variables that satisfies all clauses, and finding one if so.
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• One natural assumption to make is that dkq is small (this is typically the case in practice), and
indeed our main result will be parameterized by dkq and only non-trivial when dkq = o(log n).
By Proposition 6 (b), if dkq = Ω(log n), Problem (Main) is at least as hard as finding the
largest clique in a graph with n vertices and Ω(n) disjoint cliques. In particular, each clique in
such a graph is itself a candidate maximum clique, and any algorithm must effectively search
over Ω(n) disjoint candidates to determine the largest, since there is no structural overlap
between the cliques that an algorithm could exploit to narrow the search space. This indicates
that an exact algorithm in sub-linear time with respect to n cannot exist when dkq = Ω(log n).

Hardness Parametrized by rank+(W ). Following on the above discussion, we require some
additional assumptions to ensure that Problem (Main) can be solved, even approximately, in sub-
linear time with respect to n. One such “assumption” will be that dkq is small – we do not state
this as a formal assumption, but rather our main result will be parameterized by dkq.

Similarly, we also require some additional assumptions to ensure that Problem (Main) can
be solved, even approximately, in polynomial time with respect to k. Our main result will be
parameterized by a rank-type quantity pertaining to the matrix W = softmax(QKT ). Now QK⊤ is
by definition of rank dkq, and while the softmax operator does not preserve rank exactly, it is known
that W can be well-approximated by a matrix with rank polynomial in dkq (see Han et al. (2023),
Alman and Song (2024)). Thus, for example, if dkq is constant, then W is approximately low-rank.

Due to the softmax operator, the matrix W is entry-wise non-negative. This allows us to consider
a structural parameter known as the non-negative rank of W , denoted rank+(W ). The non-negative
rank of a matrix W ∈ Rn×n

≥0 is defined as the smallest integer rank+(W ) such that W can be written
as a product of two non-negative matrices:

W = AB⊤, where A, B ∈ Rn×rank+(W )
≥0 .

Equivalently, W can be expressed as the sum of rank+(W ) non-negative rank-one matrices. Such
a representation is called a non-negative factorization of W . Clearly, this notion is stronger than
standard matrix rank; in particular, we always have rank(W ) ≤ rank+(W ) ≤ n. For more properties
on non-negative rank, see Cohen and Rothblum (1993). Non-negative rank has many applications
in various fields, including data mining, combinatorial optimization, quantum mechanics, and more.
In our case, it turns out that the non-negative rank of W is a key parameter that quantifies the
hardness of Problem (Main). Formally, we present the following proposition:

Proposition 7. If rank+(W ) = 2, Problem (Main) admits no (1− ϵ)-approximation scheme

• with runtime f(1/ϵ) kO(1) for any function f , assuming the k-Clique problem is not Fixed-
Parameter Tractable 5 (Corollary of Theorem 6 in Kulik and Shachnai (2010)), and

5A problem is said to be Fixed-Parameter Tractable (FPT) if it can be solved in time f(k)nO(1) for some function
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• with runtime f(1/ϵ) ko(1/ϵ) for any function f , assuming Exponential Time Hypothesis holds
(Corollary of Theorem 5.1 in Jansen et al. (2016)).

For general rank+(W ), Problem (Main) admits no (1− ϵ)-approximation scheme with runtime

k
o

(
rank+(W )

ϵ log2(rank+(W )/ϵ)

)
or ko(

√
rank+(W )),

assuming Gap Exponential Time Hypothesis holds 6 (Corollary of Doron-Arad et al. (2024)).

The proof of Proposition 7 appears in Appendix C. Our proof is based on a reduction from
Problem (Main) to the well-known Multi-dimensional Knapsack Problem (MDKP), formally defined
in Appendix C. Proposition 7 shows that, when viewing k as the parameter in Problem (Main), any
algorithm achieving a (1− ϵ)-approximation must incur runtime with exponential dependence on k

that necessarily involves both rank+(W ) and 1/ϵ in a non-trivial way.

3. Main Result

From the discussions in the previous section, recall that while our algorithm’s runtime is parametrized
by the non-negative rank of W , achieving sub-linear dependence on n and polynomial dependence on
k requires that the non-negative rank of W be small. Importantly, our main result does not require
W itself to have low non-negative rank, but only that W can be well approximated entry-wise by a
low non-negative rank matrix.

Formally, suppose there exists a non-negative matrix W ′ ∈ Rn×n
≥0 such that

1− γ ≤ Wij

W ′
ij

≤ 1 + γ for all i, j,

with rank+(W ′) = r+.7 Then our main result is parametrized by r+ and γ. Just as in the case of
the parameter dkq, our guarantee is non-trivial when r+ = O(1).

Before stating our main result, we introduce some notation. For a vector x, let xmax and xmin

denote the largest and smallest entry of x, respectively. Likewise, for a matrix X, let Xmax and
Xmin denote its largest and smallest entry, respectively. If X has rows x⊤

i , we define

∥X∥2,∞ = max
i
∥xi∥2,

that is, the matrix norm induced by the vector 2- and ∞-norms.

f , where k is a chosen problem parameter. A widely held conjecture is that the k-Clique problem is not FPT.
6The Gap Exponential Time Hypothesis (Gap-ETH) asserts that, for some constant ϵ > 0, distinguishing between

satisfiable 3Sat formulas and those that are not even (1 − ϵ)-satisfiable requires exponential time.
7Actually, we only require a particular sub-matrix to be of non-negative rank r+. This sub-matrix is of significantly

smaller size, corresponding to the entries which survives a certain pruning procedure.
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We are now prepared to state our main result, which is that our algorithm (to be described in
the next section) achieves the following:

Theorem 1. Let k-ANN(n, d, k, ϵ) be the expected amortized runtime of an ϵ-Approximate k-Nearest
Neighbor algorithm, which we assume is concave in n (e.g. sub-linear suffices).

Let τ be the number of distinct functions among f1, . . . , fn. Suppose there exists W ′ ∈ Rn×n
+

such that 1− γ ≤ Wij/W ′
ij ≤ 1 + γ for all i, j, and W ′ has non-negative rank r+ with an explicit

non-negative factorization.
Given any ϵ > 0, our algorithm ALG achieves

ALG ≥ (1− g(ϵ)− 2g(γ)− 2g((1 + γ)ϵ)) ·OPT− (ϵ + h(ϵ))k.

Moreover, the expected amortized runtime of our algorithm is

O

(
ϵ−2dkq · τ · k-ANN

(
n

τ
, dv, k, ϵ

)
+ ϵ−2dkqr2

+/ϵ(1 + γ)r+(τk)r2
+/ϵ
)

,

where the Big-Oh depends only on ∥Q∥2,∞, ∥K∥2,∞, (V u)max, Wmin, and maxi∈[n]{fi((V u)max)}.

A few remarks are in order:

• Many ϵ-Approximate k-Nearest Neighbor algorithms have k-ANN (n, d, k, ϵ) sub-linear and
concave in n, and we have given such an example in Lemma 1.

• In practice, the number of distinct functions τ is typically very small – often just one.

• In ALG’s performance guarantee, the multiplicative dependence on g and the additive depen-
dence on h arise from the parametrization of fi:

fi(x− ϵ) ≥ (1− g(ϵ))fi(x)− h(ϵ) for all x.

The additional ϵk additive term comes from the use of the ϵ-Approximate k-Nearest Neighbor
algorithm.

• By Observation 1, if each fi is L-Lipschitz, our algorithm ALG achieves

ALG ≥ OPT− CϵLk

for some universal constant C > 0.

• If dkq = o(log n) and r+ = O(1), then the amortized runtime of our algorithm can be simplified
to

Õ
(
kn1−cϵ/k + kC/ϵ

)
.
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• Similar to how a small dkq implies low (standard) rank approximation, it also implies that W

can be approximated entry-wise by a matrix of low non-negative rank. In particular, we show
that if the rows of Q and K can be grouped into ℓ clusters, then such a W ′ can be constructed
with r+ = ℓ(ℓ + 1)/2 and a small γ.

Proposition 8. Let W = softmax(QK⊤). Suppose I1, . . . , Iℓ form a partition of [n] such that
for every ℓ′ ∈ [ℓ] and i, i′ ∈ Iℓ′, we have ∥qi − qi′∥2 ≤ δ and ∥ki − ki′∥2 ≤ δ. Then we can
construct W ′ ∈ Rn×n

≥0 such that

1. 1− γ ≤Wij/W ′
ij ≤ 1 + γ for all i, j, where γ = 17δ max{∥Q∥2,∞, ∥K∥2,∞},

2. and W ′ has non-negative rank r+ = ℓ(ℓ + 1)/2 with an explicit non-negative factorization.

To obtain the clusters, one approach is to directly partition the row spaces of Q and K, and
group the rows of Q and K according to this partition. Since dkq is assumed to be small, the
number of clusters is also small. This yields the following corollary.

Corollary 1. Let W = softmax(QK⊤). Given any δ > 0, we can construct W ′ ∈ Rn×n such
that 1− γ ≤ Wij/W ′

ij ≤ 1 + γ for all i, j where γ = 17δ max{∥Q∥2,∞, ∥K∥2,∞}, and W ′ has
non-negative rank

r+ = ⌈4 max{∥Q∥2,∞, ∥K∥2,∞}/δ⌉4dkq

with an explicit non-negative factorization.

The proofs of Proposition 8 and Corollary 1 appear in Appendix D. Notice that if dkq = O(1),
Corollary 1 shows that r+ = O(1) for some small γ. In this case our main result is non-trivial.

• Computing a non-negative matrix factorization is in general NP-hard (Vavasis 2010): there
is a rich literature on this subject that has yielded multiple algorithms (see Lee and Seung
(2000), Wang and Zhang (2012) for surveys). We will not be concerned with this runtime
in analyzing Problem (Main), as Q and K are given beforehand, and thus we view this as
amortized across multiple instances of Problem (Main).

• In practice, the embedding dimension dkq of items is usually much smaller than the number of
items n, so dkq = o(log n) often holds. In addition under the condition that r+ = O(1), for
any fixed ϵ > 0, our algorithm gives a 1− ϵ approximation algorithm with expected amortized
runtime that is sub-linear in the total number of items n, and polynomial in the number of
items to recommend k.

• Our algorithm operates under the same two-phase retrieve and rank paradigm that is used
in many competition-winning personalization algorithms, where both phases are adapted
specifically to simple transformers. We will discuss these two phases in detail later in this
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section. The two pieces in our algorithm’s expected amortized runtime directly correspond
to the expected amortized runtime of our algorithm’s two phases: the expected amortized
runtime of phase one is

O

(
ϵ−2dkq · τ · k-ANN

(
n

τ
, dv, k, ϵ

))
,

and the runtime of phase two is

O
(
ϵ−2dkqr2

+/ϵ(1 + γ)r+(τk)r2
+/ϵ
)

.

Real-time personalization algorithms typically operate in two phases: retrieval and ranking.
In phase one (retrieval), the algorithm efficiently selects a small subset of promising candidate
items from a large item pool. This is typically achieved using ANN algorithms over learned
item embeddings. In phase two (ranking), an optimization problem, which is determined by the
specific personalization model, is approximately solved over the retrieved subset to produce the final
recommendations.

Our algorithm also follows the retrieval and ranking structure, but introduces novel methods in
both the retrieval and ranking phases. At a high level, it operates as follows:

Phase One (Retrieval). In the retrieval phase, our algorithm leverages ANN algorithms while
explicitly incorporating the structure of the transformer architecture. Specifically, we begin by
partitioning items offline based on their query vectors qi, key vectors ki, and reward functions fi.
This partitioning is designed so that items within the same partition produce similar outputs when
processed through the self-attention layer, given a fixed user query. When a user u arrives, the
algorithm applies a given ϵ-Approximate k-Nearest Neighbor algorithm (as defined in Section 2.1)
within each partition to retrieve up to k items that are likely to be most attractive to the user.
The final set of candidate items is obtained by taking the union of the retrieved items across all
partitions.

Phase Two (Ranking). In the ranking phase, our algorithm generalizes and improves upon the
widely used Beam Search heuristic. Beam Search explores a decision tree greedily, where each level
corresponds to selecting the next item to add to the recommendation set S. Concretely, given a
candidate budget, Beam Search generates a prescribed number of candidate solutions and returns
the one with the highest reward. Each candidate solution is represented by a k-tuple (b1, . . . , bk).
To determine the ℓ-th item in the tuple, the algorithm evaluates each item not yet selected by
computing the incremental gain in the objective if the item were added, then chooses the item
corresponding to the bℓ-th largest increment. In particular, the tuple (1, . . . , 1) corresponds to
the fully greedy solution. The values b1, . . . , bk are tuned to control the number and diversity of
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candidate solutions.
Our algorithm adopts a similar tree-exploration framework but introduces a refinement that

yields provable performance guarantees. Specifically, it explores the decision tree only up to a
limited number of levels, after which it applies linear programming (LP) rounding techniques to
optimize over the remaining items. This creates a natural trade-off: exploring too many levels incurs
excessive runtime, while exploring too few levels increases the error introduced by LP rounding.
By carefully balancing this trade-off, our algorithm achieves both practical runtime – by limiting
the depth of exploration – and near-optimal reward – by minimizing the rounding loss over the
unexplored levels.

4. Algorithm and Proof of Main Theorem

Before diving into the details of our algorithm, we rewrite Problem (Main) with slightly different
notations. Let q⊤

i and k⊤
i denote the i-th rows of Q and K, respectively. Let W = softmax(QK⊤),

and let w⊤
i be the i-th row of W . For vectors a, b ∈ Rn, let a ⊙ b ∈ Rn denote the element-wise

product of a and b, i.e., (a⊙ b)i = aibi for every i ∈ [n]. We make the following observation.

Observation 2. Problem (Main) is equivalent to the following Problem (P):

max fP(x) =
n∑

i=1
xifi

(
(wi ⊙ V u)⊤x

w⊤
i x

)
(P)

s.t. x ∈ {0, 1}n, 1 ≤ e⊤x ≤ k

where e ∈ Rn is the all-ones vector, and xi = 1 indicates that item i is selected into the set S.

The proof of Observation 2 appears in Appendix E. From this point onward, we will work with
P, using its notation in place of Problem (Main).

Below we give the pseudo-code of our main algorithm.
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Algorithm 1: Main Algorithm
Input: Number of items n, maximum number of recommended items k, key matrix

K ∈ Rn×dkq , query matrix Q ∈ Rn×dkq , value matrix V ∈ Rn×dv , reward functions
{fi}ni=1, user vector u ∈ Rdv , parameter ϵ > 0, ϵ-Approximate k-Nearest Neighbor
oracle (ANN), attention matrix W = softmax(QK⊤) ∈ Rn×n

+ , low-rank
approximation W ′ ∈ Rn×n

+ with factorization W ′ = AB⊤ and element wise
guarantee 1− γ ≤Wij/W ′

ij ≤ 1 + γ

Output: Solution x to Problem (Main).

// Phase One: Preprocess (Algorithm 3)

(δ, I,S, preprocessed ANN)← Run Algorithm 3 with inputs (n, k, K, Q, V, {fi}, ϵ, ANN)

// Phase One: Query (Algorithm 4)

I ← Run Algorithm 4 with inputs (u, k, δ, I,S, preprocessed ANN)

// Phase Two (Algorithm 9)

x← Run Algorithm 9 with inputs (W, W ′ = AB⊤, γ, V, u, k, I, ϵ)

return x

4.1. Phase One (Retrieval)

In phase one, our algorithm aims to identify a small subset I ⊂ [n] of items such that the optimal
objective value of P does not decrease significantly when restricted to I. To achieve this, our
algorithm first partitions items offline based on their query vectors qi, key vectors ki, and reward
functions fi. Since both qi and ki lie in a space of dimension dkq, the number of partitions is
much smaller than n. Items in the same partition are designed to behave similarly under the
self-attention layer. That is, they produce similar outputs when interacting with other items.
When a user u arrives, the algorithm applies an ϵ-Approximate k-Nearest Neighbor algorithm (as
defined in Section 2.1) within each partition to select at most k items whose value vectors have
the highest approximate inner product similarity with u. Because items within the same partition
respond similarly under attention, user preferences within each partition are primarily determined by
similarity to the user vector. Thus, our algorithm retrieves a small subset I containing high-reward
items tailored to the user.

Proposition 9 (Phase One). Suppose we have an ϵ-Approximate k-Nearest Neighbor algorithm with
expected amortized runtime k-ANN(n, d, k, ϵ). Let τ be the number of distinct functions among
f1, . . . , fn. Given any ϵ > 0, Algorithm 4 returns an index set I ⊂ [n] such that

|I| = τk

⌈
140 max{∥Q∥2,∞, ∥K∥2,∞})2

(V u)max · ϵ

⌉2dkq

,
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and the optimal value to the following Problem P(I)

max fP(I)(x) =
n∑

i=1
xifi

(
(wi ⊙ V u)⊤x

w⊤
i x

)
(P(I))

s.t. x ∈ {0, 1}n, xi = 0 for i /∈ I, 1 ≤ e⊤x ≤ k

satisfies
OPTP(I) ≥ (1− g(ϵ))OPTP − kh(ϵ).

Moreover, suppose k-ANN(n, d, k, ϵ) is concave in n. Then the expected amortized runtime of
Algorithm 4 is⌈

140(max{∥Q∥2,∞, ∥K∥2,∞})2(V u)max
ϵ

⌉2dkq

τ ·k-ANN
(

n

τ
, dv, k,

ϵ

35 max{∥Q∥2,∞, ∥K∥2,∞}(V u)max

)
.

We make the following remark: suppose dkq = o(log n) and ∥Q∥2,∞, ∥K∥2,∞, (V u)max are all
viewed as constants, then for any given constant ϵ > 0, we have |I| = τkno(1). Moreover, suppose
k-ANN (n, dv, k, ϵ) is sub-linear in n when dv, k, ϵ are fixed, then the expected amortized runtime of
Algorithm 4 is also sub-linear in n.

4.2. Phase Two (Ranking)

In phase two, our algorithm approximately solves P(I), which is P over the retrieved subset of items
I ⊂ [n]. Without loss of generality, assume I = [m]. By the first remark of Proposition 9, we may
treat m = kno(1) under mild assumptions. Then since xi = 0 for i > m, we may consider only the
first m entries of V u and the top-left m ×m principal sub-matrix of W . Therefore, with slight
abuse of notation, we redefine V u ∈ Rm to include its first m entries, and W, W ′ ∈ Rm×m

+ to be the
top-left m×m principal sub-matrices of the corresponding matrices, respectively. Moreover, note
that the quantity

(wi ⊙ V u)⊤x

w⊤
i x

remains unchanged if the vector wi is multiplied by a non-zero constant. Thus, rescaling the rows of
W does not change P(I). Because W ∈ Rm×m

+ is now the m×m principal sub-matrix, the sum of
its rows is not normalized to 1. So for simplicity of exposition, we assume each row of W is rescaled
so that

∑m
j=1 Wij = 1, and each row of W ′ is rescaled accordingly so that 1− γ ≤Wij/W ′

ij ≤ 1 + γ

for all i, j. Then we may rewrite P(I) as

max fP(I)(x) =
m∑

i=1
xifi

(
(wi ⊙ V u)⊤x

w⊤
i x

)
(P(I))

s.t. x ∈ {0, 1}m, 1 ≤ e⊤x ≤ k.
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From this point onward, we will work with this new form of P(I).
Our algorithm begins by replacing W with a low non-negative rank surrogate W ′ and showing that

solving the problem under this approximation is sufficient. Rather than exhaustively enumerating all
possible solutions, our algorithm then focuses on a restricted collection of partial solutions that retain
the key structural information. The nonlinear terms in the objective are handled by introducing a
family of auxiliary linearized problems, which can be further simplified through discretization. This
reduction ensures that only a small number of auxiliary linearized problems need to be solved.

To address each auxiliary linearized problem, our algorithm employs a rounding procedure that
converts fractional linear-programming solutions into valid discrete ones. At this stage, the central
trade-off emerges: exploring too many partial solutions increases runtime beyond practical limits,
while exploring too few places excessive burden on the rounding step, leading to higher approximation
error. By carefully balancing this trade-off, the ranking phase achieves both computational efficiency
– through controlled exploration – and strong accuracy – by minimizing the loss introduced during
rounding.

Proposition 10. Suppose there exists W ′ ∈ Rn×n
+ such that 1 − γ ≤ Wij/W ′

ij ≤ 1 + γ for all i, j,
and W ′ has non-negative rank r+ with an explicit non-negative factorization. Given any ϵ > 0, our
algorithm ALG achieves

ALGP(I) ≥ (1− g(2γ(V u)max))2(1− g(cϵ,γ,W ′
min

))2OPTP(I)

− k(1− g(2γ(V u)max))(2ϵ(1− g(cϵ,γ,W ′
min

)) + g(cϵ,γ,W ′
min

)h(cϵ,γ,W ′
min

)

+ (1− g(cϵ,γ,W ′
min

))2h(2γ(V u)max) + h(2γ(V u)max)),

where
cϵ,γ,W ′

min
= (1 + γ)ϵ

W ′
min

,

with runtime

r+m log2 m + λmλ + λr2
+mλr+

+
⌈(4(1 + γ)k

ϵW ′
min

)r+⌉
·
⌈(V u)max −min{0, (V u)min}

ϵ

⌉r+

·
⌈

maxi∈[m]{fi((V u)max)}
ϵ

⌉
· λ′mλr++λ′

TLP,

where λ = ⌈(2r+ + 2)(V u)max/ϵ⌉ and λ′ = ⌈(2r+ + 2) maxi∈[m]{fi((V u)max)}/ϵ⌉. Here, TLP =
LP(m, 3m + r+ + 2) + LP(m, 2m + 2r+ + 2) and LP(m, n) is the runtime of solving a linear program
with m variables and n constraints.

Our proof of Proposition 10 appears in Appendix F. The proof is completed according to the
following steps:

1. Low Non-negative Rank Approximation: In Lemma 5, we prove that in order to
approximately solve P(I), it is sufficient to approximately solve P′(I), where P′(I) is obtained
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by replacing W with W ′.

2. Enumeration of Partial Solutions: We took guesses on some index sets X1, . . . , Xr+ ,
which corresponds to the non-negative factorization of W ′. Let X = (X1, . . . , Xr+) and let
P(X) denote the problem where P′(I) has additional constraints that xi = 1 for all i ∈ ∪jXj .
We showed that the total number of guesses X is bounded above, so it is sufficient to solve
P(X) for each guess X.

3. Linearization of Fractional Objective Terms: In order to solve P(X), we linearize the
fractional terms in the objective function by defining a set of auxiliary problems P(X, t) for
each t ∈ Rm

+ . These problems are parameterized by the denominator terms in the objective
function of P(X). In Lemma 7, we prove it suffices to find a t∗ for which P(X, t∗) has the
highest optimal value among all P(X, t)’s, as the corresponding optimal x∗ is an optimal
solution to P(X).

4. Dimensionality Reduction and Discretization of Auxiliary Problems: In order to
approximately solve P(X, t) for all t ∈ Rm

+ , we discretize t-space and show in Lemma 8 that it
suffices to solve P(X, t) for a small number of t’s.

5. Complete Linearization of Auxiliary Problems: Fix a given t, the objective functions
of P(X, t) inside f has rank r+. We discretized the value space of those objective functions.
In Lemma 9, we showed that in order to solve P(X, t), it is sufficient to give an oracle that,
for each discretization of the value space, identify whether there exists a feasible solution to
P(X, t) with objective values that are approximately inside the discretization.

6. Approximation of Linearized Auxiliary Problems via LP Rounding: Finally, we gave
such an oracle by a rounding procedure. Lemma 10 and Lemma 11 proved that the oracle is
correct by using the properties of our guess X.

5. Experimental Results

We performed two sets of experiments, which demonstrate the following.

Representation. Simple transformers empirically captured user preferences nearly as accurately as
more sophisticated transformer-based models. In particular, in a machine learning task involving
learning from user behaviors and predicting user preferences, simple transformers achieved an
average accuracy that was 14.1% higher than the best among various non-attention machine learning
models, such as logistic regression, random forest, and support vector machines. Compared to more
general transformer models – that is, transformers with more self-attention layers – the accuracy
of simple transformers was only 2.5% lower on average. These results demonstrate that simple
transformers can learn from user behaviors and predict user preferences with much higher accuracy
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than non-attention models and with accuracy nearly matching that of general transformers.

Optimization. Our algorithm completes simple-transformer-based recommendation tasks both
efficiently and accurately. Using the parameters learned from simple transformers in the initial
set of experiments, we conducted an optimization task involving the recommendation of a set of
items to each arriving user. Recall that our algorithm operates in two phases: retrieval and ranking.
We compared each phase of our algorithm against a natural benchmark: k-Nearest Neighbors
for retrieval and Beam Search for ranking. Combining the two retrieval methods with the two
ranking methods yields four total algorithmic variants. We evaluated performance based on the
best candidate solution produced from a fixed total number of candidate solutions. On average,
our algorithm achieved an objective value that was 20.56% higher than that of the algorithm using
our retrieval method and Beam Search for ranking, and 20.86% higher than that of the algorithm
using k-Nearest Neighbors for retrieval and our ranking method, with the same fixed total number
of candidate solutions. These results demonstrate that our algorithm outperforms the natural
benchmarks in both phases of the recommendation process.

We used two dataset. The first dataset was the Spotify Million Playlist Dataset (Chen et al.
2018). Spotify is one of the largest music streaming platforms, with over 640 million monthly active
users, including 252 million paying subscribers. The dataset comprises one million user-generated
playlists created on the Spotify platform between January 2010 and October 2017. Each playlist
includes features such as the playlist title and the titles of the tracks it contains.

The second dataset was the Trivago Session-based Hotel Recommendations Dataset (Knees et al.
2019). Trivago is a global hotel search platform that operates 55 localized websites across more
than 190 countries, providing access to over two million hotels. The dataset consists of user sessions
related to hotel search and booking, encompassing approximately 730,000 unique users and 340,000
unique hotels across roughly 900,000 sessions. Each session includes information on user interactions
with hotels, such as clicks and checkouts. In addition, the dataset contains various hotel attributes,
including price, city, and other relevant features.

5.1. Representation

In this set of experiments, our goal was to show that simple transformers were able to learn from
user behaviors and predict user preferences with high accuracy. More specifically:

Spotify. In the Spotify experiment, we designated playlists containing 20 songs as “true” playlists.
To construct “fake” playlists, we took the first 15 songs from each true playlist and appended 5
randomly selected songs. The number of true and fake playlists was balanced to be equal. Given
a playlist, the task was to classify it as either true or fake. The performance of an algorithm was
evaluated based on the average classification accuracy.
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Trivago. In the Trivago experiment, each session provided information on a user’s interactions
with the first 15 hotels. The task was to predict the user’s interactions with the subsequent 5 hotels
in the same session. The performance of an algorithm was evaluated based on the average prediction
accuracy.

We compared three classes of machine-learning algorithms on these prediction tasks:

• Non-Attention Models: This class included well-known machine learning algorithms that
do not incorporate self-attention mechanisms, such as random guessing, logistic regression,
support vector machines, and nearest neighbors. These models disregarded any potential
sequential structure in the data.

• Simple Transformers: This class consisted of transformer architectures with a single
self-attention layer, followed by linear layers and activation functions.

• General Transformers: This class contained more complex transformer architectures with
multiple self-attention layers and potentially deeper network structures.

Below we give the architecture of the simple transformers used in both experiments.

Architecture used in Spotify. Let xi denote the word2vec embedding of the i-th song in a playlist,
after being processed by a linear layer. Each user vector is modeled as the average of the embeddings
of the first 15 songs in the playlist, that is, u =

∑15
j=1 xj . Let SAQ,K,V (·) be the self-attention layer

with learned parameters Q, K, V , and let fi(·) = f(·) be an activation function composed of a linear
transformation and a logistic function, both parameterized and learned during training. Let S be
the set of indices corresponding to the 16th through 20th songs in the playlist. Then, the output of
the simple transformer is given by

5∑
i=1

f(SAQ,K,V (XS)⊤
i u),

where XS denotes the input embeddings corresponding to songs in set S. General transformer
models extend this architecture by incorporating additional self-attention layers.

Figure 1: Architecture of the simple transformer used in the Spotify experiment.
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Architecture used in Trivago. Let xi denote the learned embedding of the i-th hotel. Each user
vector is modeled as the average of the embeddings of the first 15 hotels the user engaged within
a given session, that is, u =

∑15
j=1 xj . Let SAQ,K,V (·) denote a self-attention layer with learned

parameters Q, K, and V , and let fi(·) = f(·) be an activation function composed of a linear
transformation and a logistic function, both parameterized and learned during training. Let S be
the set of indices corresponding to the 16th through 20th hotels in the session. Then, the output of
the simple transformer is given by

5∑
i=1

f(SAQ,K,V (XS)⊤
i u),

where XS denotes the input embeddings corresponding to hotels in set S. The simple transformer
architecture consisted solely of a decoder with one self-attention layer. General transformer models
extended this architecture by incorporating an encoder, as well as additional self-attention layers in
both the encoder and decoder.

Figure 2: Architecture of the transformer used in the Trivago experiment. The simple transformer only
contained the decoder, that is, a single self-attention layer.

The experimental results are presented in the tables below.

Random
Forest

Logistic
Regression

Support Vector
Machine

Simple
Transformer

General
Transformers

Spotify 0.518 0.520 0.334 0.702 0.726
Trivago 0.271 0.530 0.531 0.631 0.742

Table 1: Average accuracy of different machine-learning models on Spotify and Trivago.

In Table 1, the simple transformer outperformed the non-attention models by an average accuracy
margin of 0.182 on the Spotify dataset and 0.2 on the Trivago dataset, while achieving performance
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Dec. Layers \ Enc. Layers 1 2 4

1 0.590 0.602 0.596
2 0.654 0.692 0.700
4 0.724 0.742 0.675

Table 2: Average accuracy of general (full encoder–decoder) transformers with various numbers of
self-attention layers on Trivago.

comparable to that of general transformers with additional self-attention layers. Moreover, on the
Trivago dataset, compared to the various general transformer architectures in Table 2, the simple
transformer outperformed some more complex architectures and performed only slightly worse than
the best-performing ones. Specifically, its accuracy was only 2.4% lower than the average accuracy
across all general transformers. It is important to note that, in practice, the optimal architecture is
not known a priori. Therefore, the simple transformer represents a strong and robust choice for
this prediction task. In summary, simple transformers effectively learned from user behaviors and
predicted user preferences with substantially higher accuracy than non-attention models, and with
accuracy nearly matching that of general transformers.

5.2. Optimization

In the previous set of experiments, we demonstrated that simple transformers could empirically
capture user preferences on both datasets. In this set of experiments, we turned to the task of
personalized recommendation based on simple transformers. We treated the parameters Q, K, and
V learned in the previous experiments as ground truth and solved Problem (Main). Each instance
corresponded to an arriving user. More specifically:

Spotify. In the Spotify experiment, we were given 15 songs as input, and the task was to recommend
an additional 5 songs to complete a 20-song playlist. The given 15 songs were treated as a
representation of the user. The corresponding user vector u was computed by first averaging the
word2vec embeddings of the 15 songs, and then applying a linear transformation to project the
result into the value space. The key, query, and value vectors of each song were obtained from the
parameters learned in the previous experiments.

Trivago. In the Trivago experiment, we were given 15 user interactions as input, and the task was
to recommend 5 additional hotels to maximize the booking rate. The user vector u was computed
by averaging the learned embeddings of the 15 hotels with which the user had interacted. The key,
query, and value vectors of each hotel were similarly obtained from the parameters learned in the
previous experiments.
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Recall that our algorithm operates in two phases: retrieval and ranking. Our algorithm performs
these two phases as described below:

• Phase One (Retrieval): Our algorithm partitions the row space of the query matrix Q and
the key matrix K offline, with the number of partitions treated as a tunable hyperparameter.
Then, when a user vector u arrives, for each group of items whose query and key vectors both
belong to the same corresponding partition, we apply the k-Nearest Neighbor algorithm and
retain the k items with the highest base reward v⊤u. All retained items are then passed to
the ranking phase.

• Phase Two (Ranking): Our algorithm first enumerates all possible combinations of the top
c highest-reward items to include in a candidate solution – referred to as valid tuples in the
proof of Proposition 10 – where c is a tunable hyperparameter. For the remaining items, the
algorithm solves the residual subproblem by evaluating a fixed number of auxiliary problems,
denoted as P(X, t) in the same proof. The number of auxiliary problems solved was tuned to
control the total number of candidate solutions generated.

We compared each phase of our algorithm against a natural benchmark:

• k-Nearest Neighbor (Retrieval): The k-Nearest Neighbor algorithm served as the bench-
mark for the retrieval phase. It ignored any potential sequential effects and instead ranked
items solely based on their base rewards, computed as v⊤u. The algorithm then greedily
selected the same number of items as our algorithm’s retrieval phase to pass on to the ranking
phase.

• Beam Search (Ranking): Beam Search served as the benchmark for the ranking phase.
Beam Search is a greedy-type heuristic commonly used in practice. Each candidate solution
generated by Beam Search is specified by a k-tuple (b1, . . . , bk). To select the ℓ-th item in
the candidate solution, the algorithm evaluated each item not yet included by computing
the incremental gain in the objective value if the item were added. It then selected the
item corresponding to the bℓ-th highest increment and added it to the candidate solution.
In particular, the tuple (1, . . . , 1) corresponds to the fully greedy solution. The values of
b1, . . . , bk were tuned based on the desired number of candidate solutions.

Combining our algorithm’s retrieval and ranking phases with the two benchmark algorithms
yields four distinct algorithms. The experimental results are presented in Figure 3. Our complete
algorithm consistently outperformed the other three across all settings for the number of candidate
solutions generated.

In particular, when the ranking phase is fixed – either to our algorithm’s Phase Two or to Beam
Search – our algorithm’s Phase One outperformed k-Nearest Neighbor by an average margin of
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20.86%. This demonstrates the effectiveness of our algorithm’s Phase One in selecting a superior
subset of items to be passed on to the ranking phase. On the other hand, when the retrieval phase
is fixed – either to our algorithm’s Phase One or to k-Nearest Neighbor – our algorithm’s Phase
Two outperformed Beam Search by an average margin of 20.56%. This shows our algorithm’s Phase
Two in ranking a given set of items is effective. In summary, our algorithm achieved both high
efficiency and high accuracy in solving the personalized recommendation task, with strong empirical
performance in both the retrieval and ranking phases.

(a) Spotify (b) Trivago

Figure 3: Performances of four algorithms. The x-axis is the number of candidate solutions generated
by each algorithm, and the y-axis is the objective value of the current best candidate solution. Each
figure is averaged across 100 instances.

We further present scatter plots to directly compare our algorithm’s Phase Two with Beam
Search. We fixed our algorithm’s Phase One as the retrieval phase. For the ranking phase, we
proceeded as follows: we fixed the top two highest-reward items to be included in each candidate
solution. Our algorithm’s Phase Two then generated candidate solutions by greedily solving a fixed
number of auxiliary problems. In contrast, Beam Search generated candidate solutions by branching
the same number of times and selecting the best resulting solution. As a result, the candidate
solutions produced by our algorithm and Beam Search involved the same number of “iterations”
and thus incurred roughly the same computational cost.

Each point in Figure 4 corresponds to a pair of matched candidate solutions produced by our
algorithm and Beam Search under this setup, where the x-axis represents the objective value of our
algorithm’s solution, and the y-axis represents that of the Beam Search solution. Figure 4 shows
that our algorithm’s candidate solution outperformed the corresponding Beam Search solution in
90.92% of instances, with an average improvement of 29.01%. These results demonstrate that our
algorithm’s Phase Two yields substantial improvements over Beam Search in the ranking phase.
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(a) Spotify (b) Trivago

Figure 4: Scatter plots of candidate solutions. Each point corresponds to a pair of matched candidate
solutions produced by our algorithm and Beam Search. The x-axis represents our algorithm’s objective
value and the y-axis represents the Beam Search candidate solution’s objective value. Each plot contains
2500 data points given by 25 candidate solutions in each of the 100 instances.

6. Conclusion

In conclusion, our paper concerned the problem of real-time personalization. Traditional embedding-
based machine learning models are provably unable to model certain user preferences, and recent
transformer-based models are difficult to optimize in practice. We considered a specific transformer
architecture called simple transformers, which are transformers with a single self-attention layer. We
proved that simple transformers were able to capture complex user preferences, such as sequential
variety effect, and pairwise complementarity and substitution effects, which are essential for accu-
rate recommendations. We then presented an algorithm that optimizes simple-transformer-based
recommendation tasks, which achieves near-optimal performance with sub-linear runtime. Empirical
results demonstrated that simple transformers outperformed non-transformer models in accuracy
and were competitive compared to more complex transformers, and our algorithm optimized the rec-
ommendation problem with higher object value than standard benchmark algorithms like k-Nearest
Neighbor and Beam Search.
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A. Proofs in Section 2.1

Proof of Lemma 1. We prove that this can be done by applying a θ-Approximate Nearest Neighbor (θ-
ANN) algorithm from Ailon and Chazelle (2009). Given a set of n “data points” P ⊂ Rdv , the goal of the
θ-Approximate Near Neighbor algorithm is to build a data structure that, given a query q ∈ Rdv , returns a
data point p ∈ P such that ∥q − p∥2 ≤ (1 + θ)∥q − p′∥2 for all p′ ∈ P .

Lemma 2 (Theorem 1 in Ailon and Chazelle (2009)). Algorithm 1 in Ailon and Chazelle (2009) solves the
θ-ANN problem in query time O(d log(d) + ϵ−3 log2(n)).

Moreover, the Algorithm 1 in Ailon and Chazelle (2009) can be easily modified to return k data points
p1, . . . , pk ∈ P such that ∥q − pi∥2 ≤ (1 + θ)∥q − p′∥2 for all i = 1, . . . , k and all p′ ∈ P \ {p1, . . . , pk}. This
can be done by running their Algorithm 1 for k times, where each time we ignore the data points that
have already been returned in previous runs. More specifically, in their Algorithm 1 we change the ‘else if
DT (x, p′) > (1 + 1/2)k′’ to ‘else if DT (x, p′) > (1 + 1/2)k′ or p′ has been returned in previous rounds’, which
gives our desired performance.

Because the guarantee of Lemma 1 is a multiplicative guarantee on the ℓ2 distance, below we show how
to convert it into an additive guarantee on the inner products. We first reduce v1, . . . , vn and u to the unit
sphere. Let vmax = maxi∥vi∥2. Let

v′
i =

(√
vmax − ∥vi∥2

2, v⊤
i

)⊤

/vmax ∈ Rd+1,

for each i = 1, . . . , n, where we append a scalar to vi and rescale the vector. Let u′ = (0, u⊤)⊤/∥u∥2. Then
v′

i, u′ ∈ Sd. Moreover,

∥u′ − v′
i∥2

2 = ∥u′∥2
2 + ∥v′

i∥2
2 − 2v′

i
⊤

u′

= 2− 2v⊤
i u/(vmax||u||2).

Therefore v⊤
i u = vmax||u||2

2 (2−∥u′−v′
i∥2

2). Hence if |∥u′−v′
i∥2

2−∥u′−v′
j∥2

2| ≤ 2ϵ
vmax||u||2

, then |v⊤
i u−v⊤

j u| ≤ δ.
Hence, we can run the Algorithm 1 in Ailon and Chazelle (2009) with inputs v′

1, . . . , v′
n, u′, and θ = 8

√
2ϵ

(V u)max
,

which outputs k indices i1, . . . , ik such that ∥u′ − v′
ij
∥2 ≤ (1 + θ)∥u′ − v′

i∗
j
∥2 for each j = 1, . . . , k. Then

|∥u′ − v′
ij
∥2

2 − ∥u′ − v′
i∗

j
∥2

2| = ∥u′ − v′
i∗

j
∥2

2 − ∥u′ − v′
ij
∥2

2

= (∥u′ − v′
i∗

j
∥2 + ∥u′ − v′

ij
∥2)(∥u′ − v′

i∗
j
∥2 − ∥u′ − v′

ij
∥2)

≤ 4(∥u′ − v′
i∗

j
∥2 − ∥u′ − v′

ij
∥2)

≤ 4θ∥u′ − v′
i∗

j
∥2

≤ 4
√

2ϵ

= 2ϵ

vmax||u||2
,

where the first equality follows from the definition of i∗
j , the second equality and the second inequality follows

since vij , vi∗
j
, u′ ∈ Sdv . Therefore we have v⊤

ij
u ≥ v⊤

i∗
j
u− ϵ for each j = 1, . . . , k as desired. ■

Proof of Proposition 4. The algorithm ALG operates as follows:
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Algorithm 2: ϵ-Approximate k-Nearest Neighbor in Lemma 1
PREPROCESS
Input: v1, . . . , vn ∈ Rd and ϵ > 0;
vmax ← maxi∥vi∥2;

v′
i ←

(√
vmax − ∥vi∥22, vi

)
/vmax for each i = 1, . . . , n;

θ ← 8
√

2ϵ/c, where c is an upper bound on vmax||u||2 for all possible u;
Run PREPROCESS of the θ-ANN algorithm in Ailon and Chazelle (2009) with inputs
v′

1, . . . , v′
n ∈ Rd and θ > 0.

QUERY
Input: u ∈ Rd;
u′ ← (0, u)/∥u∥2;
j ← 1;
while j ≤ k do

Run PREPROCESS of the θ-ANN algorithm in Ailon and Chazelle (2009) with input u′,
with the modification of changing ‘else if DT (x, p′) > (1 + 1/2)k′’ to ‘else if
DT (x, p′) > (1 + 1/2)k′ or p′ /∈ {vij′}j′<j ’ ;

ij ← the index of the output of the θ-ANN algorithm in Ailon and Chazelle (2009);
end
Return i1, . . . , ik.
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1. Partition the items according to their reward functions fi.

2. For each partition, apply the given ϵ-Approximate k-Nearest Neighbor algorithm to identify k items
that are collectively among the most attractive to the user within that partition.

3. Evaluate the rewards of all such candidate items across partitions and select the top-k items with the
highest overall reward.

We analyze the performance of ALG. Let {S1, . . . , Sτ} be a partition of the index set [n] such that fi = fj

for every τ ′ ∈ [τ ] and i, j ∈ Sτ ′ . We first construct an index set Jτ ′ ⊂ Sτ ′ for each τ ′ ∈ [τ ], and then combine
them to obtain the set of all candidate items I.

For each index set Sτ ′ , we only choose k indices out of it to include in Jτ ′ , namely the k indices that
are approximately the k highest indices in {v⊤

i u}i∈Sτ′ .8 Specifically, for each ℓ′ ∈ [ℓ], we run the given
ϵ-Approximate k-Nearest Neighbor oracle with given set of points

⋃
i∈Sτ′{Vi} ⊂ Rd, and query u, numbers k

and ϵ as inputs. We let Jτ ′ be the collection of all output indices for each ℓ′ ∈ [ℓ]. Then |Jτ ′ | ≤ k for each τ ′.
Let I =

⋃
τ ′∈[τ ] Jτ ′ , then |I| ≤ τk.

Let S∗ = {i∗
1, . . . , i∗

k} be the optimal solution to Problem (Pure Embedding) (for simplicity we as-
sume |S∗| = k, and other cases can be handled similarly). We show that ALGPure Embedding ≥ (1 −
g(ϵ))OPTPure Embedding − kh(ϵ). For each m = 1, . . . , k, let im be the index such that im and i∗

m are in
the same Sτ ′ and v⊤

im
u ≥ v⊤

i∗
m

u− ϵ. Then fim = fi∗
m

. Let S = {i1, . . . , ik}. Because ALG returns the k-highest
value in

⋃
i∈I{fi(v⊤

i u)}, we have

ALGPure Embedding ≥
∑
i∈S

fi(v⊤
i u)

≥
∑
i∈S∗

fi(v⊤
i u− ϵ)

≥ (1− g(ϵ))
∑
i∈S∗

fi(v⊤
i u)− kh(ϵ)

= (1− g(ϵ))OPTPure Embedding − kh(ϵ).

Finally we analyze the expect amortized runtime of ALG. The expect amortized runtime of constructing
each Jτ ′ is k-ANN(|Sτ ′ |, d, k, ϵ). Because |I| ≤ τk, the runtime of finding the k-highest value in

⋃
i∈I{fi(v⊤

i u)}
is log2(τk). Therefore the expect amortized runtime of ALG is

τ∑
τ ′=1

k-ANN(|Sτ ′ |, d, k, ϵ) + log2(τk) ≤ τ · k-ANN
(n

τ
, d, k, ϵ

)
+ log2(τk).

The inequality follows since
∑τ

τ ′=1 |Sτ ′ | = n and k-ANN(n, d, k, ϵ) is concave in n.
■

B. Proofs in Section 2.3

Proof of Proposition 5 (Model 1). We construct a simple transformer with the following parameters:

• The input dimension is set to
N = nk + nkd + 1 + nk,

8For simplicity we assume |Sτ ′ | ≥ k. Otherwise we simply choose all indices in Sτ ′ .
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and is indexed as follows. Define index sets

I = {(i, t) : i ∈ [n], t ∈ [k]}, M = {(j, m, a) : j ∈ [n], m ∈ [k], a ∈ [d]},

D = {⊙} (one dummy row), B = {(i, t)base : i ∈ [n], t ∈ [k]},

and order the N rows of Q and K as [I; M; D; B].

Before proceeding, we give intuitions on how these index sets are used:

– I = {(i, t)}: These rows are the only rows with nonzero queries Q. Each of them represents the
effects of the past items to the current item.

– M = {(j, m, a)}: These rows have non-zero keys K and scalar values V . They have zero queries
Q. They encode the item im at position m and its similarity embedding xim,a.

– D = {⊙}: This is a dummy row that dominates the softmax denominator, so that the softmax
vector behaves like division by a constant.

– B = {(i, t)base}: These rows encode the base utility ûi of each item i.

• The embedding dimension is set to dkq = k + d + 2. This is split into a position block of length k, a
component block of length d, a single dummy column (denoted ∆), and a single base column (denoted
Θ).

• Let M > 0 be a sufficiently large constant and b0 ∈ R a fixed constant. Later we will take M large
enough so that the simple transformer approximates g(S, it) to arbitrary precision.

• For each position t ∈ [k], define the row vector rt ∈ R1×k by

(rt)m =

log λ t−m, m < t,

−M, m ≥ t,
m ∈ [k],

i.e.
rt =

[
log λt−1, log λt−2, · · · log λ1, −M, −M, · · · , −M︸ ︷︷ ︸

k−t+1

]
.

For each t ∈ [k], let Rt ∈ Rn×k be the matrix with all rows equal to rt:

Rt =


rt

rt

...
rt

 (n rows).

Then the position block of the query matrix is the vertical stacking of these k blocks:

Qpos =


R1

R2
...

Rk

 ∈ R(nk)×k.
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Next, define the n×d matrix G collecting the (component-wise) logarithms of the similarity embeddings
xi = (xi,1, . . . , xi,d) ∈ Sd−1:

G =


(log x1)⊤

(log x2)⊤

...
(log xn)⊤

 =


log x1,1 log x1,2 · · · log x1,d

log x2,1 log x2,2 · · · log x2,d

...
...

. . .
...

log xn,1 log xn,2 · · · log xn,d

 .

The component block of the query matrix is k identical copies of G stacked vertically:

Qcmp =


G

G
...
G

 ∈ R(nk)×d.

Let 1p ∈ Rp×1 be the all-ones column, and 0p ∈ Rp×1 be the all-zeross column. Define the dummy and
base query columns as

Q∆ =


M3 1nk

0nkd

0

0nk

 , QΘ =


b0 1nk

0nkd

0

0nk

 ∈ RN×1.

Putting the query blocks together, we define Q to be

Q =


Qpos Qcmp Q∆ QΘ

0 0 0 0

0 0 0 0

0 0 0 0

 ∈ RN×(k+d+2).

• The position block of the key matrix is defined as

Kpos =


1nd 0 · · · 0
0 1nd · · · 0
...

...
. . .

...
0 0 · · · 1nd

 ∈ R(nkd)×k,

i.e., a block-diagonal matrix with k diagonal blocks, each block the column 1nd.

Let Id ∈ Rd×d be the identity matrix. The component block of the key matrix is defined as

Kcmp =


Id

Id

...
Id

 ∈ R(nkd)×d,
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Thus, in the block associated with position m and item j, the d consecutive rows equal the identity Id.

The dummy and base key columns are

K∆ =


0nk

0nkd

1

0nk

 , KΘ =


0nk

0nkd

0

1nk

 ∈ RN×1.

Putting the key blocks together, we define K to be

K =


0 0 0 0

Kpos Kcmp 0 0

0 0 K∆ 0

0 0 0 KΘ

 ∈ RN×(k+d+2).

• Let v ∈ Rnd×1:

v =


x⊤

1

x⊤
2
...

x⊤
n

 =



x1,1
...

x1,d

x2,1
...

xn,d


.

We define V (one scalar per row) by placing zeros on I and D, the item–component entries onM, and
the base utilities on B:

V =



0nk

β eM3
v

0

eM3 ( 1
β log û1, . . . , 1

β log ûn

)⊤

...

eM3 ( 1
β log û1, . . . , 1

β log ûn

)⊤


∈ RN×1,

where eM3 ( 1
β log û1, . . . , 1

β log ûn

)⊤ is repeated k times. Set u = 1 so that V ⊤
i u = Vi for each row i.

• We set fi(x) = exp(βx) for all i ∈ [nk + nkd + 1 + nk].

• For a length-k sequence S = (i1, . . . , ik), let S′ ⊂ [nk + nkd + 1 + nk] = [I; M; D; B] such that S′

contains {(it, t) : t ∈ [k]} ⊂ [I] from the first set of rows, {(im, m, a) : m ∈ [k], a ∈ [d]} ⊂ [M] from
the second set of rows, the dummy row D, and {(it, t)base : t ∈ [k]} ⊂ B from the set of base rows.

We show that the simple transformer above approximates g(S, it) to arbitrary precision. The intuition of
our construction is given below:

• Q encodes lags (λ) and similarity embeddings (log xi).
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• K encodes positions (t) in the sequence.

• V encodes similarity embeddings (log xi) and base utilities (ûi).

• The dummy row makes softmax act like a constant divider.

Fix a length-k sequence S = (i1, . . . , ik). We first compute XS′Q(XS′K)⊤ for each (it, t) ∈ S′:

(context) (XS′Q(XS′K)⊤)(it,t),(im,m,a) = rt(m) + log xit,a =

log λt−m + log xit,a, m < t,

−M + log xit,a, m ≥ t,

(dummy) (XS′Q(XS′K)⊤)(it,t),⊙ = M3,

(base) (XS′Q(XS′K)⊤)(it,t),(it,t)base = 0.

Hence the denominator of the softmax operation on row XS′Q(XS′K)⊤ is

Zt = eM3
+ 1 +

∑
m<t

d∑
a=1

λt−mxit,a +
∑
m≥t

d∑
a=1

e−M xit,a.

Define the following (finite) constants

Λt =
∑
m<t

λt−m, S
(≤)
t =

∑
m<t

∑
a

λt−mxit,a , S
(≥)
t =

∑
m≥t

∑
a

e−M xit,a .

Set
δt = e−M3

+ e−M3
S

(≤)
t + e−M3

S
(≥)
t .

Then
Zt = eM3

(1 + δt).

Therefore the attention weights on row (it, t) are

softmax(XS′Q(XS′K)⊤)(it,t),(im,m,a) = exp(rt(m) + log xit,a)
Zt

= λt−m xit,a

eM3(1 + δt)
(m < t),

and

softmax(XS′Q(XS′K)⊤)(it,t),(it,t)base = exp(0)
Zt

= e−M3

1 + δt
.

Recall that
V(im,m,a) = eM3

xim,a, V⊙ = 0, V(it,t)base = eM3
· 1

β
log ûit

.
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So we have

SAQ,K,V (XS′)(it,t) =
∑
m<t

d∑
a=1

softmax(XS′Q(XS′K)⊤)(it,t),(im,m,a) V(im,m,a)

+ softmax(XS′Q(XS′K)⊤)(it,t),(it,t)base V(it,t)base

= 1
1 + δt

(∑
m<t

d∑
a=1

λt−mxit,a

eM3 eM3
xim,a + e−M3

eM3
· 1

β
log ûit

)

= 1
1 + δt

(∑
m<t

λt−m

d∑
a=1

xit,axim,a + 1
β

log ûit

)

= 1
1 + δt

(
t−1∑
ℓ=1

λℓ x⊤
it

xit−ℓ
+ 1

β
log ûit

)
.

Fix any ϵ > 0. Since S
(≤)
t ≤ Λt ≤ Λk−1 and S

(≥)
t ≤ d e−M , we can set M large enough so that

e−M3(
1 + Λk−1

)
+ d e−(M3+M) ≤ ϵ,

which gives δt ≤ ϵ for every t. Finally, we have

TQ,K,V,f1,...,fn,u(XS′)(it,t) = f(it,t)
(
SAQ,K,V (XS′)(it,t)

)
= exp

(
β

1 + δt

t−1∑
ℓ=1

λℓ x⊤
it

xit−ℓ
+ 1

1 + δt
log ûit

)

= û
1

1+δt
it

exp
(

β

1 + δt

t−1∑
ℓ=1

λℓ x⊤
it

xit−ℓ

)
.

Hence, as M →∞ (so δt → 0 uniformly in t), we have

(1− ϵ)g(S, it) ≤ TQ,K,V,f1,...,fn,u(XS′)(it,t) ≤ TQ,K,V,f1,...,fn,u(XS′)(it,t).

Therefore the simple transformer approximate g(S, it) to arbitrary precision.
■

Proof of Proposition 5 (Model 2). We construct a simple transformer with three self-attention heads. The
first head and the second head represent the complementarity effects and the substitution effects, respectively.
They have input dimensions n + 1, output dimension 1, and embedding dimension n + 1. The third head
represents the base utility of each item. It has input dimensions n, output dimension d, and embedding
dimension n. Note that this multi-head construction can be equivalently represented as a single-head simple
transformer by arranging the Q, K, V , and u matrices for all three heads into block form. However, for
clarity, we present the proof by describing each head separately.

Let A, B ∈ Rn×n
+ be two matrices with positive entries such that Hij = exp(Aij) − exp(Bij) for every

i, j ∈ [n]. Let M be a sufficiently large constant. Later we will set M to be large enough so that the simple
transformer approximates g(S, i) to arbitrary precision.

Head 1. The first self-attention head has the following parameters:
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• Q(1), K(1) ∈ R(n+1)×(n+1) are set such that

Q(1)(K(1))⊤ =


M

M

0 0 M

A

.

• V (1) ∈ Rn+1 is set to V
(1)

i = 1 for each i ∈ [n] and V
(1)

n+1 = 0. Set u(1) = 1 so that (V (1)
i )⊤u(1) = V

(1)
i .

• Set f
(1)
i (x) = exp(M)x for every i ∈ [n2 + 1].

• For a subset S ⊂ [n], we set S(1) ⊂ [n + 1] where S(1) = S ∪ {n + 1}.

We have

softmax
(
XS(1)Q(1)(XS(1)K(1))⊤)

ij
=



exp(Aij)∑
j∈S exp(Aij) + exp(M) + (n− |S|) , i ∈ S, j ∈ S,

exp(M)∑
j∈S exp(Aij) + exp(M) + (n− |S|) , i ∈ S, j = n + 1,

1∑
j∈S exp(Aij) + exp(M) + (n− |S|) , i ∈ S, j ∈ [n] \ S,

1
n + exp(M) , i = n + 1, j ∈ [n],

exp(M)
n + exp(M) , i = n + 1, j = n + 1,

1
n + 1 , i ∈ [n] \ S, j ∈ [n+1].

Therefore, for every i ∈ S, we have

SAQ(1),K(1),V (1)(XS(1))⊤
i u(1) =

∑
j∈S exp(Aij)∑

j∈S exp(Aij) + exp(M) + (n− |S|) .

For any given ϵ > 0, we can take M to be sufficiently large such that∑
j∈S exp(Aij)− ϵ

2
exp(M) ≤ SAQ(1),K(1),V (1)(XS(1))⊤

i u(1) ≤
∑

j∈S exp(Aij)
exp(M) .

Finally, we get ∑
j∈S

exp(Aij)− ϵ

3 ≤ TQ(1),K(1),V (1),f
(1)
1 ,...,f

(1)
n ,u(1)(XS(1))i ≤

∑
j∈S

exp(Aij).

Head 2. The second self-attention head has exactly the same parameters, expect we replace A with B and
we flip the sign of fi:
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• Q(2), K(2) ∈ R(n+1)×(n+1) are set such that

Q(2)(K(2))⊤ =


M

M

0 0 M

B

.

• V (2) ∈ Rn+1 is set to V
(2)

i = 1 for each i ∈ [n] and V
(2)

n+1 = 0. Set u(2) = 1 so that (V (1)
i )⊤u(2) = V

(2)
i .

• Set f
(2)
i (x) = − exp(M)x for every i ∈ [n2 + 1].

• For a subset S ⊂ [n], we set S(2) ⊂ [n + 1] where S(2) = S ∪ {n + 1}.

Then, similar to head 1, we get

−
∑
j∈S

exp(Bij) ≤ T
Q(2),K(2),V (2),f

(2)
1 ,...,f

(2)
n ,u(2)(XS(2))i ≤ −

∑
j∈S

exp(Bij) + ϵ

3 .

Head 3. The third self-attention head has the following parameters:

• Q(3), K(3) ∈ Rn×n are set such that

Q(3)(K(3))⊤ =


0 −M · · · −M

−M 0 · · · −M
...

...
. . .

...
−M −M · · · 0

 .

• V (3) ∈ Rn×d is set to V
(3)

i = v̂i for each i ∈ [n].

• u(3) ∈ Rd is set to u(3) = û.

• Set f
(3)
i (x) = x for every i ∈ [n].

• For a subset S ⊂ [n], we set S(3) = S.

For every i ∈ S, we have

SAQ(3),K(3),V (3)(XS(3))⊤
i u(3) = (v̂i)⊤û + (n− |S|) exp(−M)

1 + (n− |S|) exp(−M) .

For any given ϵ > 0, we can take M to be sufficiently large such that

(v̂i)⊤û− ϵ

3 ≤ TQ(3),K(3),V (3),f
(3)
1 ,...,f

(3)
n ,u(3)(XS(3))i ≤ (v̂i)⊤û.

Complete the Proof. Because exp(Aij)− exp(Bij) = Hij Combining the above three self-attention heads,
we have

v̂⊤
i û +

∑
j∈S

Hij − ϵ ≤
3∑

ℓ=1
T

Q(ℓ),K(ℓ),V (ℓ),f
(ℓ)
1 ,...,f

(ℓ)
n ,u(ℓ)(XS(ℓ))i ≤ v̂⊤

i û +
∑
j∈S

Hij .

Therefore the three attention heads approximate g(S, i) to arbitrary precision.
■
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C. Proofs in Section 2.5.

Proof of Proposition 6 (a). Fix any instance of the (k − 1)-Clique problem: let G be the (undirected,
unweighted) graph with n − 1 vertices, and let A ∈ {0, 1}(n−1)×(n−1) be its adjacency matrix (where we
follow the convention that diagonal entries are set equal to 1). We will create an explicit instance of Problem
(Main) in the following way (using the formulation in P):

• K = In×n, i.e. the n× n identity matrix, so that W = softmax(QK⊤) = softmax(Q).

• Q ∈ Rn×n is set according to

Qij =

0 for i = n or j = n

−NAij for i, j ̸= n,

where N > 1 is a constant large enough that (k − 1) exp(−N) ≤ 1/2. In block notation, this is

Q =


0

0
0 0 0

−N ·A

.

• dv = 1, and we set u = 1, so that V u = V .

• V ∈ Rn×1 is set according to Vi = 1 for i = 1, . . . , n − 1, and Vn = M , where we take any constant
M ≥ 2.

• For i = 1, . . . , n− 1, we set fi(·) to be:

fi(x) =


0 if 0 ≤ x ≤ M+1

2
6x−3(M+1)

M−1 if M+1
2 < x < 2M+1

3

1 if x ≥ 2M+1
3 .

Because M ≥ 2, we have (2M + 1)/3 > (M + 1)/2, so fi(·) is continuous piece-wise linear for every
i = 1, . . . , n− 1. We set fn(x) = 0 for every x.

Note that the quantity
(wi ⊙ V u)⊤x

w⊤
i x

remains unchanged if the vector wi is multiplied by a non-zero constant. Thus, rescaling the rows of W does
not change P. So for simplicity of exposition, we replace W with W ′, defined to be

W ′
ij =

1 for i = n or j = n

exp(−NAij) for i, j ̸= n.

As a sanity check, W is simply W ′ with each row rescaled to sum to one.
Now notice that because fi(x) ≤ 1 for every i = 1, . . . , n− 1, and fn(x) = 0, the optimal value of this

instance of P is at most k − 1. It will suffice to show that G has a clique of size k − 1 if and only if the
optimal value is k − 1. We prove both directions separately.

49



If G has a clique of size k− 1, then the optimal value is k− 1: Suppose G has a clique of size k− 1,
and let C ⊂ [n− 1] be the vertex set of one such clique. Consider the solution x∗, where x∗

i = 1 if and only if
i ∈ C ∪ {n}. We will show that the objective value at x∗ is k − 1 (and thus the optimal value is k − 1):

Because W ′
ij = exp(−N) whenever i, j ∈ C, we have

n∑
i=1

x∗
i fi

(
(w′

i ⊙ V u)⊤x∗

w′
i
⊤x∗

)
=

∑
i∈C

fi

(
(w′

i ⊙ V u)⊤x∗

w′
i
⊤x∗

)

=
∑
i∈C

fi

(
M + (k − 1) exp(−N)
1 + (k − 1) exp(−N)

)
.

Since N was chosen to be large enough that (k − 1) exp(−N) ≤ 1/2, it follows that

M + (k − 1) exp(−N)
1 + (k − 1) exp(−N) ≥

M + 1
2

1 + 1
2

= 2M + 1
3 .

Therefore,

n∑
i=1

x∗
i fi

(
(w′

i ⊙ V u)⊤x∗

w′
i
⊤x∗

)
=
∑
i∈C

fi

(
M + (k − 1) exp(−N)
1 + (k − 1) exp(−N)

)
= |C| = k − 1.

If the optimal value is k − 1, the G has a clique of size k − 1: Suppose the optimal value is k − 1.
Let x∗ be an optimal solution, and let C ⊂ [n− 1] be the index set such that x∗

i = 1 for i ∈ C. Notice that if
a solution x has xn = 0, then since (w′

i ⊙ V u)j = W ′
ij for all j ∈ [n− 1], we have

n∑
i=1

xifi

(
(w′

i ⊙ V u)⊤x

w′
i
⊤x

)
=

n∑
i=1

xifi (1) = 0.

Therefore, it must be the case that x∗
n = 1. Also, because

k − 1 =
n∑

i=1
x∗

i fi

(
(w′

i ⊙ V u)⊤x∗

w′
i
⊤x∗

)
≤

n−1∑
i=1

x∗
i = |C|,

we must have |C| = k − 1 and

fi

(
(w′

i ⊙ V u)⊤x∗

w′
i
⊤x∗

)
= 1

for every i ∈ C.
Let d(i) be the degree of vertex i in the induced subgraph of G with vertex set C. Then

n∑
i=1

x∗
i fi

(
(w′

i ⊙ V u)⊤x∗

w′
i
⊤x∗

)
=

∑
i∈C

fi

(
(w′

i ⊙ V u)⊤x∗

w′
i
⊤x∗

)

=
∑
i∈C

fi

(
M + (k − 2− d(i)) + exp(−N)(d(i) + 1)
1 + (k − 2− d(i)) + exp(−N)(d(i) + 1)

)
≤

∑
i∈C

fi

(
M + (k − 2− d(i))
1 + (k − 2− d(i))

)
,

where the last inequality follows since M ≥ 2. Because |C| = k − 1, we have d(i) ≤ k − 2. Suppose for the
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sake of contradiction that d(i) ≤ k − 3 for some i ∈ I. Then

fi

(
M + (k − 2− d(i))
1 + (k − 2− d(i))

)
≤ fi

(
M + 1

2

)
= 0,

which contradicts that

fi

(
(w′

i ⊙ V u)⊤x∗

w′
i
⊤x∗

)
= 1

for every i ∈ C. Therefore we must have d(i) = k − 2 for every i ∈ C. Hence C corresponds to the vertex set
of a clique of size k − 1. ■

Proof of Proposition 6 (b). Fix any constant M ≥ 1. We construct an instance of Problem (Main) (using
the fornulation in P) by applying the Johnson-Lindenstrauss Lemma:

Lemma 3 (Johnson-Lindenstrauss Lemma). For any 0 < ϵ < 1 and any set S of m points in Rn, there exists a
universal constant c > 0 and a linear function f : Rn → Rd with d = cϵ−2 log(m) such that

(1− ϵ)∥xi∥2
2 ≤ ∥f(xi)∥2

2 ≤ (1 + ϵ)∥xi∥2
2

for all xi ∈ S and
(1− ϵ)∥xi − xj∥2

2 ≤ ∥f(xi)− f(xj)∥2
2 ≤ (1 + ϵ)∥xi − xj∥2

2

for all xi, xj ∈ S.

Take N to be large enough such that exp(−N) ≤ 1/2M . Take 0 < δ < 1 to be small enough such that
exp(−δN) ≥ 1 − exp(−N). Then N and δ can be chosen to be both only depend on M . We obtain the
following corollary:

Corollary 2 (Corollary of Lemma 3.). There exists a number c(M) > 0 and a set S of exp(c(M) · dkq) unit
vectors in Rdkq such that |u⊤

i uj | ≤ δ for every ui, uj ∈ S and ui ̸= uj.

Proof of Corollary 2. Let c > 0 be the universal constant in Lemma 3 and let n = exp(c−1(δ/4)2 · dkq). Let
c(M) = c−1(δ/4)2, then n = exp(c(M) · dkq). Because δ > 0 only depends on M , we have c(M) > 0 also only
depends on M . Consider {ei}n

i=1 ⊂ Rn where ei ∈ Rn is the unit vector where the i-th entry equals to 1 and
all other entries equal to 0. Then we have ∥ei − ej∥2

2 = 2 for every ei ≠ ej . By Lemma 3, there exists a linear
function f : Rn → Rdkq such that (

1− δ

4

)
≤ ∥f(ei)∥2

2 ≤
(

1 + δ

4

)
for all ei and

2
(

1− δ

4

)
≤ ∥f(ei)− f(ej)∥2

2 ≤ 2
(

1 + δ

4

)
for all ei ̸= ej .

For every ei ̸= ej , because

∥f(ei)− f(ej)∥2
2 = ∥f(ei)∥2

2 + ∥f(ej)∥2
2 − 2f(ei)⊤f(ej),
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we have

f(ei)⊤f(ej) = (∥f(ei)∥2
2 + ∥f(ej)∥2

2 − ∥f(ei)− f(ej)∥2
2)/2

≤
((

1 + δ

4

)
+
(

1 + δ

4

)
− 2

(
1− δ

4

))
/2

= δ

2 ,

and

f(ei)⊤f(ej) = (∥f(ei)∥2
2 + ∥f(ej)∥2

2 − ∥f(ei)− f(ej)∥2
2)/2

≥
((

1− δ

4

)
+
(

1− δ

4

)
− 2

(
1 + δ

4

))
/2

= −δ

2 .

Let ui = f(ei)/∥f(ei)∥2 for all i ∈ [n], then each ui is a unit vector. Moreover, for every ui ̸= uj ,

u⊤
i uj = f(ei)⊤f(ej)

∥f(ei)∥2∥f(ej)∥2
≤

δ
2

1− δ
4

= δ

(
2

4− δ

)
< δ,

where the last inequality follows since 0 < δ < 1. Similarly,

u⊤
i uj = f(ei)⊤f(ej)

∥f(ei)∥2∥f(ej)∥2
≥
− δ

2
1− δ

4
= −δ

(
2

4− δ

)
> −δ.

Therefore |u⊤
i uj | ≤ δ for every ui ̸= uj . Take S = {ui}n

i=1 gives the desired set of unit vectors. ■

Corollary 2 states that there exists a set of unit vectors in Rdkq , with size exponential in dkq, where all
unit vectors in the set are approximately orthonormal.

Fix any dkq such that exp(c(M) · dkq) ≤ n− 1 and any k ≥M + 1. Let G be a graph with n− 1 vertices
v1, . . . , vn−1 and ℓ = exp(c(M) · dkq) disjoint cliques, each of size at least k −M and at most k − 1. Let
I1, . . . , Iℓ ⊂ [n− 1] be the index sets of vertices corresponding to these ℓ cliques. That is, {vi}i∈Iℓ′ forms a
clique for each ℓ′ ∈ [ℓ]. Without loss of generality we assume ℓ′ ∈ Iℓ′ for every ℓ′ ∈ [ℓ].

By Corollary 2, there exists ℓ unit vectors u1, . . . , uℓ ∈ Rdkq such that |u⊤
i uj | ≤ δ for i ̸= j. Let

uℓ+1, . . . , un−1 be unit vectors such that ui = uℓ′ for i ∈ Iℓ′ . That is, for indices i, j such that vi and
vj are in the same clique, we have ui = uj . Let U ∈ R(n−1)×dkq where the i-th row of U is u⊤

i . Let
A = UU⊤ ∈ R(n−1)×(n−1), then A has rank at most dkq.

Because A has rank at most dkq, there exists Q, K ∈ Rn×dkq such that

QK⊤ =


0

0
0 0 0

−N ·A

.

We create an explicit instance of P similar to the instance in the proof of Proposition 6 (a):
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• W = softmax(QK⊤). For simplicity of exposition, we replace W with W ′, defined to be

W ′
ij =


1 for i = n or j = n

exp(−N |u⊤
i uj |) for i, j ̸= n and Aij ̸= 1

exp(−N) for i, j ̸= n and Aij = 1,

As a sanity check, W is simply W ′ with each row rescaled to sum to one.

• dv = 1, and we set u = 1, so that V u = V .

• V ∈ Rn×1 is set according to Vi = 1 for i = 1, . . . , n− 1, and Vn = 2.

• For i = 1, . . . , n− 1, we set fi(·) to be:

fi(x) =



0 if 0 ≤ x ≤ 2+exp(−N)k+ 1
4

1+exp(−N)k+ 1
4

x−
2+exp(−N)k+ 1

4
1+exp(−N)k+ 1

4
2+exp(−N)k
1+exp(−N)k

−
2+exp(−N)k+ 1

4
1+exp(−N)k+ 1

4

if 2+exp(−N)k+ 1
4

1+exp(−N)k+ 1
4

< x < 2+exp(−N)k
1+exp(−N)k

1 if x ≥ 2+exp(−N)k
1+exp(−N)k .

Because 2+exp(−N)k
1+exp(−N)k >

2+exp(−N)k+ 1
4

1+exp(−N)k+ 1
4
, we have fi(·) is continuous piece-wise linear for every i =

1, . . . , n− 1. We set fn(x) = 0 for every x.

Now notice that because fi(x) ≤ 1 for every i = 1, . . . , n− 1, and fn(x) = 0, the optimal value of this
instance of Problem P is at most k− 1. It will suffice to show that the largest clique G has size k′ if and only
if the optimal value is k′. We prove both directions separately.

If G has a clique of size k′, then the optimal value is at least k′: Suppose G has a clique of size k′.
Without loss of generality, let I1 ⊂ [n− 1] correspond the vertex set of a clique of size k′ in G. Consider the
solution x∗, where x∗

i = 1 for i ∈ I1 ∪ {n}. Because |I1 ∪ {n}| ≤ k, the solution x∗ is feasible. We will show
that the objective value of P at x∗ is k′ (and thus the optimal value is at least k′).

Because W ′
ij = exp(−N) whenever i, j ∈ I1, we have

n∑
i=1

x∗
i fi

(
(w′

i ⊙ V u)⊤x∗

w′
i
⊤x∗

)
=

∑
i∈I1

fi

(
(w′

i ⊙ V u)⊤x∗

w′
i
⊤x∗

)

=
∑
i∈I1

fi

(
2 + k′ exp(−N)
1 + k′ exp(−N)

)
.

Since k′ ≤ k − 1. It follows that

2 + k′ exp(−N)
1 + k′ exp(−N) >

2 + k exp(−N)
1 + k exp(−N) .

Therefore
n∑

i=1
x∗

i fi

(
(w′

i ⊙ V u)⊤x∗

w′
i
⊤x∗

)
=
∑
i∈I1

fi

(
2 + k′ exp(−N)
1 + k′ exp(−N)

)
= |I1| = k′.
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If the largest clique in G has size k′, then the optimal value is at most k′: By our assumption
we have k′ ≥ k −M . Suppose for the sake of contradiction that the optimal value is k∗ > k′. Let x∗ be an
optimal solution to P. Notice if x∗

n = 0, then since (w′
i ⊙ V u)j = W ′

ij for all j ∈ [n− 1], we have

n∑
i=1

x∗
i fi

(
(w′

i ⊙ V u)⊤x∗

w′
i
⊤x∗

)
=

n∑
i=1

x∗
i fi (1) = 0.

Therefore we must have x∗
n = 1.

Let I ⊂ [n − 1] be the index set where x∗
i = 1 for i ∈ I. Because fi(x) ≤ 1 for every i = 1, . . . , n − 1,

we have |I| ≥ k∗. Let d(i) be the degree of vertex i in the induced subgraph of G with vertex set {vi}i∈I .
Because G consists of disjoint cliques with size at most k′, we have d(i) ≤ k′ − 1 for every i ∈ C.

Fix any i ∈ I such that

fi

(
(w′

i ⊙ V u)⊤x∗

w′
i
⊤x∗

)
> 0,

or, equivalently,
(w′

i ⊙ V u)⊤x∗

w′
i
⊤x∗

>
2 + exp(−N) + 1

4
1 + exp(−N) + 1

4
.

Because exp(−N |u⊤
i uj |) ≥ exp(−δN) for every i, j ̸= n and Aij ̸= 1, we have

(w′
i ⊙ V u)⊤x∗

w′
i
⊤x∗

=
2 +

∑
j∈I,Aij ̸=1 exp(−N |u⊤

i uj |) + (d(i) + 1) exp(−N)
1 +

∑
j∈I,Aij ̸=1 exp(−N |u⊤

i uj |) + (d(i) + 1) exp(−N)

≤ 2 + (|I| − d(i)− 1) exp(−δN) + (d(i) + 1) exp(−N)
1 + (|I| − d(i)− 1) exp(−δN) + (d(i) + 1) exp(−N)

≤ 2 + (k∗ − d(i)− 1) exp(−δN) + (d(i) + 1) exp(−N)
1 + (k∗ − d(i)− 1) exp(−δN) + (d(i) + 1) exp(−N)

= 2 + exp(−δN)k∗ − (exp(−δN)− exp(−N))(d(i) + 1)
1 + exp(−δN)k∗ − (exp(−δN)− exp(−N))(d(i) + 1)

≤ 2 + exp(−δN)k∗ − (exp(−δN)− exp(−N))k′

1 + exp(−δN)k∗ − (exp(−δN)− exp(−N))k′ ,

where the second inequality follows since |I| ≥ k∗, and the last inequality follows since exp(−δN)−exp(−N) >

0 and d(i) ≤ k′ − 1. Therefore

2 + exp(−δN)k∗ − (exp(−δN)− exp(−N))k′

1 + exp(−δN)k∗ − (exp(−δN)− exp(−N))k′ >
2 + exp(−N)k + 1

4
1 + exp(−N)k + 1

4
.

So we have
exp(−δN)k∗ − (exp(−δN)− exp(−N))k′ < exp(−N)k + 1

4 .

Rearrange the above inequality gives

exp(−δN)(k∗ − k′) < exp(−N)(k − k′) + 1
4 .

Because k∗ ≥ k′ + 1 and k′ ≥ k −M , we get

exp(−δN) < exp(−N)M + 1
4 .
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However, since exp(−N) ≤ 1/2M and exp(−δN) ≥ 1− 1/2M , we have

exp(−δN) ≥ 1− 1
2M
≥ 5

6 > exp(−N)M + 1
4 .

A contradiction. Therefore k∗ ≤ k′. ■

Proof of Proposition 7. Our proof is based on a reduction from Problem (Main) to the well-known Multi-
dimensional Knapsack Problem (MDKP), defined as follows:

Definition 4 (Multi-dimensional Knapsack Problem). The Multi-dimensional Knapsack Problem (MDKP) with
c items and d dimensions is defined as:

max fMDKP(x) = p⊤x(MDKP)

s.t. y⊤
i x ≤ ti ∀i ∈ [d],

x ∈ {0, 1}c.

Here, p ∈ Nc, and for all i ∈ [d], we have yi ∈ Zc
≥0 and ti ∈ Z≥0.9

We present the reduction in the following proposition:

Proposition 11. Consider Problem (Main), written in the equivalent form P as given in Observation 2,
reproduced below, which has parameters n, k, and r+, where r+ is the non-negative rank of W :

max fP(I)(x) =
n∑

i=1
xifi

(
(wi ⊙ V u)⊤x

w⊤
i x

)
(P)

s.t. x ∈ {0, 1}n, 1 ≤ e⊤x ≤ k.

Now consider an instance of MDKP with parameters c and d. Suppose there exists an algorithm ALG for
solving P with parameters n = k = c + d + 1 and min{c, d} ≤ r+ ≤ c + d + 1, such that for any sufficiently
small ϵ > 0, the algorithm satisfies

ALGP ≥ (1− ϵ) OPTP

with runtime T . Then we can construct an algorithm ALG′ for solving MDKP with parameters c and d, such
that for the same ϵ, it satisfies

ALG′
MDKP ≥ (1− ϵ) OPTMDKP

with runtime O(T ).

Proof of Proposition 11. Fix an MDKP instance. We create an instance of P as follows:

• n = k = d + c + 1. Here, out of the n total variables, the first d variables will correspond to the d

constraints of MDKP, the c variables after that will correspond to the c variables of MDKP, and the
last variable will be a dummy variable that must be selected in any optimal solution of P.

9We assume pmin > 0 without loss of generality. If pj = 0 for some j ∈ [c], there always exists an optimal solution
with xj = 0. Hence, we can safely ignore the j-th entry of p, x, and each yi.
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• For each i = 1, . . . , d, set

wij =


0 for j = 1, . . . , d

yi,j−d for j = d + 1, . . . , d + c

1 for j = d + c + 1.

That is, in block notation,
w⊤

i =
[

0 · · · 0 y⊤
i 1

]
.

Then we have

w⊤
i x =

c∑
j=1

yijxd+j + xd+c+1.

Moreover, since yi ∈ Zc
≥0 for each i ∈ [d], the non-negative rank of the sub-matrix of W consisting of

its first d rows is at most min{c, d}.

• For each i = d + 1, . . . , d + c + 1, set wi ∈ Rd+c+1
≥0 ’s to be any non-zero vectors such that W has the

desired non-negative rank r+. This is possible since min{c, d} ≤ r+ ≤ c + d + 1.

• dv = 1, and we set u = 1, so that V u = V .

• V ∈ R(d+c+1)×1 is set to be Vi = 0 for i = 1, . . . , d, and Vi = 1 for i = d + 1, . . . , d + c, and Vd+c+1 = 2.

• For each i = 1, . . . , d, set

fi(x) =


−
(∑c

j=1 pj + 1
)

for x ≤ ti+3
ti+2

x− ti+2
ti+1

ti+2
ti+1 −

ti+3
ti+2

·

(
c∑

j=1
pj + 1

)
for ti+3

ti+2 < x < ti+2
ti+1

0 for x ≥ ti+2
ti+1 .

Then fi(x) is continuous piecewise-linear.

• For each i = d + 1, . . . , d + c, set fi(x) = pi−d. Set fd+c+1(x) = 0.

Because pmin > 0 and 0⃗ ∈ {0, 1}c is a feasible solution to MDKP, we have OPTMDKP = 0 if and only if
0⃗ ∈ {0, 1}c is the only feasible solution to MDKP. Moreover, if 0⃗ ∈ {0, 1}c is not the only feasible solution to
MDKP, then OPTMDKP ≥ pmin.

Our proof relies on the following lemma.

Lemma 4. Let x ∈ {0, 1}n be a feasible solution to P such that fP(x) > 0. Then we can construct a feasible
solution z ∈ {0, 1}c to MDKP such that fP(x) = fMDKP(z).

Conversely, let z ∈ {0, 1}c be a feasible solution to MDKP such that fMDKP(z) > 0. Then we can construct
a feasible solution x ∈ {0, 1}n to P such that fP(x) = fMDKP(z).

Lemma 4 gives a correspondence between solutions to P and solutions to MDKP. In particular, as a
corollary, Lemma 4 implies the relationship between the optimal objective values of P and MDKP.

Corollary 3 (Corollary of Lemma 4.). OPTP ≤ 0 if and only if OPTMDKP = 0. Moreover, suppose OPTMDKP > 0.
Then OPTP = OPTMDKP.
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Proof of Corollary 3. Suppose OPTP > 0. Let x∗ be an optimal solution to P. By Lemma 4 there exists a
feasible solution z to MDKP such that fMDKP(z) > 0 and

OPTP = fP(x∗) = fMDKP(z) ≤ OPTMDKP.

Conversely, suppose OPTMDKP > 0. Let z∗ be an optimal solution to MDKP. By Lemma 4 there exists a
feasible solution x to MDKP such that

OPTMDKP = fMDKP(z∗) = fP(x) ≤ OPTP.

We also get
fP(x) ≥ fMDKP(z∗) > 0.

■

Before proving Lemma 4, we first show that it is sufficient to prove Lemma 4. Assume we have an
algorithm ALG for solving P such that, for any sufficiently small ϵ > 0, we have ALG satisfies

ALGP ≥ (1− ϵ) OPTP.

Then our proposed algorithm ALG′ for solving MDKP works as follows:

• If ALGP ≤ 0, ALG′ outputs 0⃗ ∈ {0, 1}c.

• If ALGP > 0, let x be the solution to P given by ALGP. Then ALG′ outputs the solution z ∈ {0, 1}c

to MDKP given by Lemma 4. That is, z ∈ {0, 1}c that satisfies

fP(x) = fMDKP(z).

Performance Guarantee of ALG′: Suppose OPTMDKP = 0. Then by Corollary 3,

ALGP ≤ OPTP ≤ 0.

Therefore ALG′ correctly outputs 0⃗ ∈ {0, 1}c.
On the other hand, suppose OPTMDKP > 0. Then by Corollary 3,

ALG′
MDKP = fMDKP(z) = fP(x) ≥ (1− ϵ)OPTP = (1− ϵ)OPTMDKP.

This proves the desired performance guarantee of ALG′. To finish the proof, we prove Lemma 4 and
analyze the runtime of ALG′.

Proof of Lemma 4. Recall for each i = 1, . . . , d, we set

wij =


0 for j = 1, . . . , d

yi,j−d for j = d + 1, . . . , d + c

1 for j = d + c + 1.

57



Also, (V u)i = 0 for i = 1, . . . , d, and (V u)i = 1 for i = d + 1, . . . , d + c, and (V u)d+c+1 = 2. Therefore for
i = 1, . . . , d we have

(wi ⊙ V u)⊤x

w⊤
i x

=
∑c

j=1 yijxd+j + 2xd+c+1∑c
j=1 yijxd+j + xd+c+1

.

Recall for each i = d + 1, . . . , d + c we set fi(x) = pi−d, and we set fd+c+1(x) = 0. Therefore we have

fP(x) =
c+d+1∑

i=1
xifi

(
(wi ⊙ V u)⊤x

w⊤
i x

)

=
d∑

i=1
xifi

(∑c
j=1 yijxd+j + 2xd+c+1∑c
j=1 yijxd+j + xd+c+1

)
+

c∑
i=1

xd+ipi.

First, let x ∈ {0, 1}n be a feasible solution to P(I) such that fP(x) > 0. Let z ∈ {0, 1}c where zj = xd+j

for j ∈ [c]. We claim that z is a feasible solution to MDKP and

fP(x) = fMDKP(z).

Because
∑c

i=1 xd+ipi <
c∑

j=1
pj + 1, we must have xi = 1 for every i ∈ [d]. Moreover, if xd+c+1 = 0, then

fi

(∑c
j=1 yijxd+j + 2xd+c+1∑c
j=1 yijxd+j + xd+c+1

)
= fi(1) < 0

for every i ∈ [d]. Hence we must have xd+c+1 = 1. Because yi ∈ Zc
≥0 and ti ∈ Z≥0 for all i ∈ [d], if∑c

j=1 yijxd+j > ti, we must have
∑c

j=1 yijxd+j ≥ ti + 1. Then

fi

(∑c
j=1 yijxd+j + 2xd+c+1∑c
j=1 yijxd+j + xd+c+1

)
≤ fi

(
ti + 3
ti + 2

)
= −

 c∑
j=1

pj + 1

 .

Therefore we must have
∑c

j=1 yijxd+j ≤ ti for all i ∈ [d]. Hence
∑c

j=1 yijzj ≤ ti for all i ∈ [d], which shows
z is a feasible solution to MDKP. Finally, because∑c

j=1 yijxd+j + 2xd+c+1∑c
j=1 yijxd+j + xd+c+1

≥ ti + 2
ti + 1

for all i ∈ [d], we have

fi

(∑c
j=1 yijxd+j + 2xd+c+1∑c
j=1 yijxd+j + xd+c+1

)
= 0

for all i ∈ [d]. Therefore

fP(x) =
d∑

i=1
xifi

(∑c
j=1 yijxd+j + 2xd+c+1∑c
j=1 yijxd+j + xd+c+1

)
+

c∑
i=1

xd+ipi

=
c∑

i=1
zipi

= fMDKP(z).

Conversely, let z ∈ {0, 1}c be a feasible solution to MDKP such that fMDKP(z) > 0. Let x be a solution to
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P where xi = 1 for i = 1, . . . , d and i = d + c + 1, and xd+i = zi for i = 1, . . . , c. We claim that x is a feasible
solution to MDKP and

fP(x) = fMDKP(z).

Because z is a feasible solution to MDKP, we have
∑c

j=1 yijzj ≤ ti for all i ∈ [d]. Therefore
∑c

j=1 yijxd+j ≤ ti

for all i ∈ [d]. Then ∑c
j=1 yijxd+j + 2xd+c+1∑c
j=1 yijxd+j + xd+c+1

≥ ti + 2
ti + 1

for all i ∈ [d]. Therefore we have

fi

(∑c
j=1 yijxd+j + 2xd+c+1∑c
j=1 yijxd+j + xd+c+1

)
= 0

for all i ∈ [d]. Hence

fP(x) =
d∑

i=1
xifi

(∑c
j=1 yijxd+j + 2xd+c+1∑c
j=1 yijxd+j + xd+c+1

)
+

c∑
i=1

xd+ipi

=
c∑

i=1
zipi

= fMDKP(z).

■

Given an MDKP instance, our construction of the corresponding P instance takes O(1) runtime. Also,
the procedure of the construction of a feasible solution z ∈ {0, 1}c to MDKP given a feasible solution to P
described in Lemma 4 takes O(1) runtime: we simply set z ∈ {0, 1}c where zj = xd+j for j ∈ [c]. Therefore,
if ALG has runtime T , our ALG′ has runtime O(T ).

■

By Proposition 11, any (1 − ϵ)-approximation scheme for P can be directly translated into a (1 − ϵ)-
approximation scheme for MDKP with comparable runtime. Therefore, many hardness results for MDKP
carry over directly to P. We cite several such results below:

Proposition 12 (Theorem 6 in Kulik and Shachnai (2010)). If d = 2, MDKP admits no (1− ϵ)-approximation
scheme with runtime f(1/ϵ) cO(1) for any function f , assuming the k-Clique problem is not Fixed-Parameter
Tractable.

Proposition 13 (Theorem 5.1 in Jansen et al. (2016)). If d = 2, MDKP admits no (1 − ϵ)-approximation
scheme with runtime f(1/ϵ) cO(1) for any function f , with runtime f(1/ϵ) co(1/ϵ) for any function f , assuming
Exponential Time Hypothesis holds.

Proposition 14 (Corollary of Doron-Arad et al. (2024)). For general d, MDKP admits no (1− ϵ)-approximation
scheme with runtime

k
o
(

d
ϵ log2(d/ϵ)

)
or ko(

√
d),

assuming Gap Exponential Time Hypothesis holds.
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These results, along with Proposition 11, gives our desired lower bound statement in Proposition 7.
■

D. Proofs in Section 3.

Proof of Proposition 8. Let i1 ∈ I1, . . . , iℓ ∈ Iℓ. Let π : {(m, m′) | m, m′ ∈ [ℓ], m ≤ m′} → [ℓ(ℓ + 1)/2] be
any bijection. Let A, B ∈ Rn×ℓ(ℓ+1)/2

≥0 where

Ai,π(m,m′) =


√

exp(q⊤
i km′)/

∑n
s=1 exp(q⊤

i ks) for i = m

0 otherwise,

and

Bj,π(m,m′) =


√

exp(q⊤
mkj)/

∑n
s=1 exp(q⊤

mks) for j = m′

0 otherwise.

Let W ′ = AB⊤. Then

W ′
ij = A⊤

i Bj

=
∑

π(m,m′)

Ai,π(m,m′)Bj,π(m,m′)

= Ai,π(i,j)Bj,π(i,j)

= exp(q⊤
i kj)/

n∑
s=1

exp(q⊤
i ks).

Finally, because for every i, i′ ∈ Iℓ′ we have ∥qi − qi′∥2 ≤ δ and ∥ki − ki′∥2 ≤ δ, we have exactly the same
setup as in the proof of Proposition 9. Therefore the exact same proof gives 1− γ ≤Wij/W ′

ij ≤ 1 + γ for all
i, j, where γ = 17δ max{∥Q∥2,∞, ∥K∥2,∞}.

■

Proof of Corollary 1. In the proof of Proposition 9, we constructed a partition I = {I1, . . . , Iℓ} with
ℓ = (4 max{∥Q∥2,∞, ∥K∥2,∞}/δ)2dkq that satisfies for every i, i′ ∈ Iℓ′ we have ∥qi−qi′∥2 ≤ δ and ∥ki−ki′∥2 ≤ δ.
The result then follows from Proposition 8. ■

E. Proofs in Section 4.1.

Proof of Observation 2. Fix S = {s1, . . . , sm} and let x ∈ {0, 1}n where xs1 = · · · = xsm
= 1. We prove

that the objective values of Problem (Main) and P are the same. By our construction of XS , we get
XQ ∈ Rn×dkq where (XQ)sj

= qsj
, and similarly for XK ∈ Rn×dkq and XV ∈ Rn×dv . Then for i ∈ S we get
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softmax((XQ)(XK)⊤)i,sℓ
= exp(q⊤

i ksℓ
)/
∑

sℓ′ ∈S exp(q⊤
i ksℓ′ ). Therefore, for i ∈ S we have

(wi ⊙ V u)⊤x

w⊤
i x

=
∑

sℓ∈S wi,sℓ
V usℓ∑

sℓ∈S wi,sℓ

=
∑

sℓ∈S(exp(q⊤
i ksℓ

)/
∑

j∈[n] exp(q⊤
i kj))(V ⊤

sℓ
u)∑

sℓ∈S(exp(q⊤
i ksℓ

)/
∑

j∈[n] exp(q⊤
i kj))

=
∑

sℓ∈S(exp(q⊤
i ksℓ

)/
∑

sℓ′ ∈S exp(q⊤
i ksℓ′ ))(V ⊤

sℓ
u)∑

sℓ∈S(exp(q⊤
i ksℓ

)/
∑

sℓ′ ∈S exp(q⊤
i ksℓ′ ))

=
∑

sℓ∈S softmax((XQ)(XK)⊤)i,sℓ
(V ⊤

sℓ
u)∑

sℓ∈S softmax((XQ)(XK)⊤)i,sℓ

= ((softmax((XQ)(XK)⊤)XV )i)⊤u

= SAQ,K,V (XS)⊤
i u,

where the fifth equality follows since
∑

j softmax(A)i,j = 1 for every matrix A. Because this holds for every
i ∈ S, the objective values of Problem (Main) and P are the same. ■

Proof of Proposition 9. Fix any ϵ > 0. Let δ > 0 be a parameter such that

(2) δ ≤ 1
140 max{∥Q∥2,∞, ∥K∥2,∞}

and ϵ ≥ 34δ max{∥Q∥2,∞, ∥K∥2,∞}(V u)max + δ.

First we partition the rows of Q and K. Because we can cover a ball with radius ∥Q∥2,∞ in Rdkq using
⌈4∥Q∥2,∞/δ⌉dkq number of balls with radius δ/2 (see e.g. Verger-Gaugry (2005), Dumer (2007), Shalev-
Shwartz and Ben-David (2014)), we can create a partition of the index set [n] such that the size of the
partition is ⌈4∥Q∥2,∞/δ⌉dkq , and ∥qi − qi′∥2 ≤ δ for every i, i′ in the same partition. 10 Similarly, we can
create a partition of the index set [n] such that the size of the partition is ⌈4∥K∥2,∞/δ⌉dkq , and ∥kj−kj′∥2 ≤ δ

for every j, j′ in the same partition. Let I = {I1, . . . , Iℓ} be the product partition of the above two partitions.
Then ℓ = ⌈4 max{∥Q∥2,∞, ∥K∥2,∞}/δ⌉2dkq , and for every ℓ′ ∈ [ℓ] and i, i′ ∈ Iℓ′ , we have ∥qi − qi′∥2 ≤ δ and
∥ki − ki′∥2 ≤ δ. Therefore, for any i, i′ ∈ Iℓ′ and j, j′ ∈ Iℓ′′ , we have

|q⊤
i kj − q⊤

i′ kj′ | = |q⊤
i (kj − kj′) + k⊤

j′ (qi − qi′)|

≤ |q⊤
i (kj − kj′)|+ |k⊤

j′ (qi − qi′)|

≤ ∥qi∥2∥kj − kj′∥2 + ∥kj′∥2∥qi − qi′∥2

≤ 2δ max{∥Q∥2,∞, ∥K∥2,∞}.
10We can create such a partition via the packing-covering duality in the following way (see e.g. Theorem 14.1,

Theorem 14.2, and Example 14.1 of Wu (2017)). First we create a maximal packing of the ball B(⃗0, ∥Q∥2,∞) ⊂ Rdkq

using balls with radius δ/4 greedily, where we greedily choose points x1, x2, . . . such that the balls B(xi, δ/4) are
disjoint. We stop when no more such points can be added in B(⃗0, ∥Q∥2,∞) ⊂ Rdkq . Then, by the packing-covering
duality, the balls B(xi, δ/2) cover B(⃗0, ∥Q∥2,∞). This is because any uncovered point can be added to the packing we
created before, which contradicts the maximality of the packing.
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Then, because 2δ max{∥Q∥2,∞, ∥K∥2,∞} ≤ 1, we have∣∣∣∣ exp(q⊤
i kj)

exp(q⊤
i′ kj′)

− 1
∣∣∣∣ ≤ ∣∣exp(|q⊤

i kj − q⊤
i′ kj′ |)− 1

∣∣
≤ |exp(2δ max{∥Q∥2,∞, ∥K∥2,∞})− 1|

≤ 4δ max{∥Q∥2,∞, ∥K∥2,∞},

where the last inequality follows by exp(x) ≤ 1+2x for 0 ≤ x ≤ 1. Therefore, because 4δ max{∥Q∥2,∞, ∥K∥2,∞} ≤
1/35, we have∣∣∣∣ wij

wi′j′
− 1
∣∣∣∣ =

∣∣∣∣ exp(q⊤
i kj)/

∑n
m=1 exp(q⊤

i km)
exp(q⊤

i′ kj′)/
∑n

m′=1 exp(q⊤
i′ km′)

− 1
∣∣∣∣

≤
∣∣(1 + 4δ max{∥Q∥2,∞, ∥K∥2,∞})2/(1− 4δ max{∥Q∥2,∞, ∥K∥2,∞})2 − 1

∣∣
≤ 4 · 352

342 · 4δ max{∥Q∥2,∞, ∥K∥2,∞}

≤ 17δ max{∥Q∥2,∞, ∥K∥2,∞},

where the first inequality follows since 1 − 4δ max{∥Q∥2,∞, ∥K∥2,∞} ≤ exp(q⊤
i kj)/ exp(q⊤

i′ kj′) ≤ 1 +
4δ max{∥Q∥2,∞, ∥K∥2,∞}, and the second inequality follows since (1 + x)2/(1− x)2 ≤ 1 + (4a2/(a− 1)2)x for
every a > 1 and 0 ≤ x ≤ 1/a.

Now we construct our desired index set I. Let {S1, . . . , Sτ} be a partition of the index set [n] such that
fi = fj for every τ ′ ∈ [τ ] and i, j ∈ Sτ ′ . We first construct an index set Jτ ′ ⊂ Sτ ′ for each τ ′ ∈ [τ ], and then
combine them to obtain I.

Fix any τ ′ ∈ τ . For each index set Iℓ′ , we only choose k indices out of it to include in Jτ ′ , namely the k

indices that are approximately the k highest indices in {(V u)i}i∈Sτ′ ∩Iℓ′ .11 Specifically, for each ℓ′ ∈ [ℓ], we
run the given δ-Approximate k-Nearest Neighbor oracle with given set of points

⋃
i∈Sτ′ ∩Iℓ′{Vi} ⊂ Rdv , and

query u, numbers k and δ as inputs. We let Jτ ′ be the collection of all output indices for each ℓ′ ∈ [ℓ]. Then
because ℓ = ⌈4 max{∥Q∥2,∞, ∥K∥2,∞}/δ⌉2dkq , we have

|Jτ ′ | = k⌈4 max{∥Q∥2,∞, ∥K∥2,∞}/δ⌉2dkq ,

and the expect amortized runtime of constructing each Jτ ′ is

⌈4 max{∥Q∥2,∞, ∥K∥2,∞}/δ⌉2dkq · k-ANN(|Sτ ′ |, dv, k, δ).

Let I = ∪τ ′∈[τ ]Jτ ′ . Then we have

|I| = τk⌈4 max{∥Q∥2,∞, ∥K∥2,∞}/δ⌉2dkq ,

and the expect amortized runtime of constructing I is
τ∑

τ ′=1
⌈4 max{∥Q∥2,∞, ∥K∥2,∞}/δ⌉2dkq · k-ANN(|Sτ ′ |, dv, k, δ)

≤ ⌈4 max{∥Q∥2,∞, ∥K∥2,∞}/δ⌉2dkq τ · k-ANN
(n

τ
, dv, k, δ

)
.

11For simplicity we assume |Sτ ′ ∩ Iℓ′ | ≥ k. Otherwise we simply choose all indices in Sτ ′ ∩ Iℓ′ .
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The inequality follows since
∑τ

τ ′=1 |Sτ ′ | = n and k-ANN(n, d, k, ϵ) is concave in n.
Finally, we show that OPTP(I) ≥ (1− g(ϵ))OPTP − kh(ϵ) with our choice of δ. Let i∗

1, . . . , i∗
k be the non-

zero coordinates of an optimal solution x∗ to the original problem (for simplicity we assume x∗ has k non-zero
entries, and other cases can be handled similarly). For each m = 1, . . . , k, let im be the index such that im and
i∗
m are in the same Sτ ′ ∩ Iℓ′ and (V u)im

≥ (V u)i∗
m
− δ. Then fim

= fi∗
m

. Let x ∈ {0, 1}n such that xim
= 1,

then x is feasible to P(I). We prove that the objective value of P(I) at x is at least (1− g(ϵ))OPTP − kh(ϵ).
Indeed, because ϵ ≥ 34δ max{∥Q∥2,∞, ∥K∥2,∞}(V u)max + δ, then for each m = 1, . . . , k we have

fim

(
(wim

⊙ V u)⊤x

w⊤
im

x

)
= fim

(∑k
j=1(wim

)ij
(V u)ij∑k

j=1(wim)ij

)

≥ fim

(∑k
j=1(wim)ij (V u)i∗

j∑k
j=1(wim)ij

− δ

)

≥ fi∗
m

(
(1− ϵ)

∑k
j=1(wi∗

m
)i∗

j
(V u)i∗

j

(1 + ϵ)
∑k

j=1(wi∗
m

)i∗
j

− δ

)

≥ fi∗
m

(∑k
j=1(wi∗

m
)i∗

j
(V u)i∗

j∑k
j=1(wi∗

m
)i∗

j

− 34δ max{∥Q∥2,∞, ∥K∥2,∞}(V u)max − δ

)

≥ fi∗
m

(∑k
j=1(wi∗

m
)i∗

j
(V u)i∗

j∑k
j=1(wi∗

m
)i∗

j

− ϵ

)

≥ (1− g(ϵ))fi∗
m

(∑k
j=1(wi∗

m
)i∗

j
(V u)i∗

j∑k
j=1(wi∗

m
)i∗

j

)
− h(ϵ),

where the first inequality follows since (V u)ij
≥ (V u)i∗

j
+ δ, the second inequality follows since 1 − ϵ ≤

(wi∗
m

)i∗
j
/(wim)ij ≤ 1+ϵ for every im, i∗

m that are in the same partition in I and ij , i∗
j that are in the same parti-

tion in I, and the third inequality follows since (1−ϵ)/(1+ϵ) ≥ 1−2ϵ and
∑k

j=1(wi∗
m

)i∗
j
(V u)i∗

j
/
∑k

j=1(wi∗
m

)i∗
j
≤

(V u)max. Then

OPTP(I) ≥
k∑

m=1
xim

fim

(
(wim ⊙ V u)⊤x

w⊤
im

x

)

≥
k∑

m=1
x∗

i∗
m

(
g(ϵ)fi∗

m

(∑k
j=1(wi∗

m
)i∗

j
(V u)i∗

j∑k
j=1(wi∗

m
)i∗

j

)
− h(ϵ)

)
≥ (1− g(ϵ))OPTP − kh(ϵ)

as desired. By our choice of δ, we have

|I| = k

⌈
140(max{∥Q∥2,∞, ∥K∥2,∞})2

(V u)max · ϵ

⌉2dkq

,

and the expected amortized runtime of finding I is⌈
140(max{∥Q∥2,∞, ∥K∥2,∞})2(V u)max

ϵ

⌉2dkq

τ · k-ANN
(

n

τ
, dv, k,

ϵ

35 max{∥Q∥2,∞, ∥K∥2,∞}(V u)max

)
.

■
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Below we give the pseudo-code of our phase one algorithm in Proposition 9.
Algorithm 3: Phase One: Preprocess

// Preprocess

Input: Number of items n, maximum number of recommended items k, key matrix K ∈ Rn×dkq ,
query matrix Q ∈ Rn×dkq , value matrix V ∈ Rn×dv , reward functions {fi}n

i=1, parameter
ϵ > 0, and ϵ-Approximate k-Nearest Neighbor oracle

Output: Parameter δ > 0, partitions I = {I1, . . . , Iℓ} and S = {S1, . . . , Sτ}, and preprocessed
ϵ-Approximate k-Nearest Neighbor oracle with set of points {Vi : i ∈ Iℓ′ ∩ Sτ ′} for each
τ ′ ∈ [n] and ℓ′ ∈ [ℓ]

Set δ > 0 according to Eq. (2)
Let R← max{∥Q∥2,∞, ∥K∥2,∞}
Form a maximal (δ/2)-separated set C ⊂ B(0, R)
Set balls {Bi}m

i=1 ← {B(c, δ/2) : c ∈ C} with m = |C|
Create partition I = {I1, . . . , Iℓ} of [n]: each Ij contains indices whose (Ki, Qi) fall in the same pair
of balls

Let τ be the number of distinct functions among f1, . . . , fn

Create partition S = {S1, . . . , Sτ} of [n] where fi = fj for all i, j ∈ Sτ ′

for τ ′ = 1 to τ do
for ℓ′ = 1 to ℓ do

if Iℓ′ ∩ Sτ ′ ̸= ∅ then
Preprocess the ϵ-Approximate k-Nearest Neighbor oracle with set of points
{Vi : i ∈ Iℓ′ ∩ Sτ ′}

end
end

end
return Parameter δ > 0, partitions I = {I1, . . . , Iℓ} and S = {S1, . . . , Sτ}, and preprocessed
ϵ-Approximate k-Nearest Neighbor oracle with set of points {Vi : i ∈ Iℓ′ ∩ Sτ ′} for each τ ′ ∈ [n] and
ℓ′ ∈ [ℓ]
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Algorithm 4: Phase One: Query

// Query

Input: User vector u ∈ Rdv , maximum number of recommended items k, outputs of Algorithm 3:
parameter δ > 0, partitions I = {I1, . . . , Iℓ} and S = {S1, . . . , Sτ}, and preprocessed
ϵ-Approximate k-Nearest Neighbor oracle with set of points {Vi : i ∈ Iℓ′ ∩ Sτ ′} for each
τ ′ ∈ [n] and ℓ′ ∈ [ℓ]

Output: Index set I of candidate items

Initialize I ← ∅
for τ ′ = 1 to τ do

for ℓ′ = 1 to ℓ do
if Iℓ′ ∩ Sτ ′ ̸= ∅ then

J ← Query the ϵ-Approximate k-Nearest Neighbor oracle with set of points
{Vi : i ∈ Iℓ′ ∩ Sτ ′}, query u, and numbers k and δ as inputs

I ← I ∪ J

end
end

end
return I

F. Proof of Proposition 10.

F.1. Step 1: Low Non-negative Rank Approximation

First we bound the loss incurred by replacing W with W ′:

Lemma 5. Let Problem P′(I) be defined as

max fP′(I) =
m∑

i=1
xifi

(
(w′

i ⊙ V u)⊤x

w′
i
⊤x

)
(P′(I))

s.t. x ∈ {0, 1}m, 1 ≤ e⊤x ≤ k.

Let x be a feasible solution to P′(I) (and hence also a feasible solution to P(I)), and suppose x satisfies

fP′(I)(x) ≥ (1− α)OPTP′(I) − β.

Then we have

fP(I)(x) ≥ (1− α)(1− g(2γ(V u)max))2OPTP(I)

− kh(2γ(V u)max)(1 + (1− α)(1− g(2γ(V u)max))− β(1− g(2γ(V u)max)).

Proof of Lemma 5. Let x be a feasible solution to P′(I). Because 1− γ ≤Wij/W ′
ij ≤ 1 + γ, we have

(w′
i ⊙ V u)⊤x

w′
i
⊤x

≥ (1− γ)
(1 + γ)

(wi ⊙ V u)⊤x

wi
⊤x

≥ (1− 2γ) (wi ⊙ V u)⊤x

wi
⊤x

.
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Therefore, for any feasible solution x, we have

fP′(I)(x) =
m∑

i=1
xifi

(
(w′

i ⊙ V u)⊤x

w′
i
⊤x

)

≥
m∑

i=1
xifi

(
(1− 2γ) (wi ⊙ V u)⊤x

w⊤
i x

)

≥
m∑

i=1
xifi

(
(wi ⊙ V u)⊤x

w⊤
i x

− 2γ(V u)max

)
≥ (1− g(2γ(V u)max))fP(I)(x)− kh(2γ(V u)max),(3)

where the third inequality follows since (wi ⊙ V u)⊤x∗/w⊤
i x∗ ≤ (V u)max.

Similarly, we also have
(wi ⊙ V u)⊤x

wi
⊤x

≥ (1− 2γ) (w′
i ⊙ V u)⊤x

w′
i
⊤x

,

which gives

(4) fP(I)(x) ≥ (1− g(2γ(V u)max))fP′(I)(x)− kh(2γ(V u)max).

Now Let x∗
P(I) be an optimal solution to P(I). Then by Eq. (3), we have

OPTP′(I) ≥ fP′(I)(x∗
P′(I))

≥ (1− g(2γ(V u)max))fP(I)(x∗
P(I))− kh(2γ(V u)max)

= (1− g(2γ(V u)max))OPTP(I) − kh(2γ(V u)max).

Finally, applying Eq. (4), we conclude that

fP(I)(x) ≥ (1− g(2γ(V u)max))fP′(I)(x)− kh(2γ(V u)max)

≥ (1− α)(1− g(2γ(V u)max))OPTP′(I) − kh(2γ(V u)max)− β(1− g(2γ(V u)max))

≥ (1− α)(1− g(2γ(V u)max))2OPTP(I)

− kh(2γ(V u)max)(1 + (1− α)(1− g(2γ(V u)max))− β(1− g(2γ(V u)max)).

■

Lemma 5 shows that, in order to approximately solve P(I), it is enough to approximately solve P′(I).
Let W ′ = AB⊤ be the known non-negative factorization, where A, B ∈ Rm×r+

≥0 . Let a⊤
i ∈ Rr+

≥0 be the
i-th row of A and bj ∈ Rm

≥0 be the j-th column of B. Then w′
i =

∑r+
j=1 aijbj . Let

(5) dj = bj ⊙ (V u).

Then P′(I) can be rewritten as:

max fP′(I) =
m∑

i=1
xifi

(∑r+
j=1 aijd⊤

j x

w′
i
⊤x

)
(P′(I))

s.t. x ∈ {0, 1}m, 1 ≤ e⊤x ≤ k.
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F.2. Step 2: Enumeration of Partial Solutions

Our algorithm enumerates a set of partial solutions (where a “partial solution” fixes the values of a subset of
variables), and then for each partial solution, solves the remaining problem near-optimally. In this step we
bound the total number of partial solutions, and in the next steps we show that for each partial solution, the
remaining problem can be solved sufficiently fast.

Let

(6) λ = ⌈(2r+ + 2)(V u)max/ϵ⌉.

Each partial solution that our algorithm considers is specified by a tuple (X1, . . . , Xr+), where each Xj ⊂ [m]
is an index set such that 1 ≤ |X1| = · · · = |Xr+ | ≤ λ. For each j ∈ [r+], let

(7) X̂j = {i ∈ [m] \Xj | dji > min
i′∈Xj

{dji′}}.

In words, X̂j consists of the indices outside of Xj whose coefficients in dj are strictly greater than the
minimum coefficient in dj across indices in Xj .

We say a tuple (X1, . . . , Xr+), with corresponding index sets X̂1, . . . , X̂r+ defined according to (7), is valid
if |∪jXj | ≤ k and (∪jXj)

⋂
(∪jX̂j) = ∅. Then every feasible solution z to P′(I) corresponds to a valid tuple

(X1, . . . , Xr+) in the following way: Let Z = {i ∈ [m] | zi = 1}. For each j ∈ [r+], we define Xj ⊂ Z to be the
set of indices i ∈ Z such that dji is among the min{λ, |Z|} highest values in Z. That is, let πj : [|Z|]→ Z be
a sorting of Z according to dj such that dj,πj(1) ≥ · · · ≥ dj,πj(|Z|). Then Xj = {πj(1), . . . , πj(min{λ, |Z|})}.
Notice that |Z| ≤ k, so |∪jXj | ≤ k. Also, we claim that Z ∩ X̂j = ∅ for each j ∈ [r+]. Supposing otherwise
that i ∈ Z ∩ X̂j , then by construction dji > dj,πj(min{λ,|Z|}). Because i ∈ Z, we have that i is in the image
of πj , so there exists i′ such that πj(i′) = i. Therefore πj(i′) ≥ πj(min{λ, |Z|}), which shows i ∈ Xj . This
contradicts Xj ∩ X̂j = ∅. Therefore Z ∩ X̂j = ∅ for each j ∈ [r+]. Hence we have (∪jXj)

⋂
(∪jX̂j) = ∅.

Therefore (X1, . . . , Xr+) is indeed a valid tuple.
The notion of correspondence to valid tuples forms a partition of the set of feasible solutions to P′(I), so

it suffices to solve P′(I) separately for each subset of this partition. This is formally stated in the following
result:

Lemma 6. Suppose we are given an oracle ALG′ that takes P′(I), any valid tuple (X1, . . . , Xr+), and any
δ > 0 as inputs, and outputs a solution x′

(X1,...,Xr+) of P′(I) that satisfies
1. x′

(X1,...,Xr+) corresponds to (X1, . . . , Xr+), and

2. for any x(X1,...,Xr+) that corresponds to (X1, . . . , Xr+), we have

fP′(I)(x′
(X1,...,Xr+)) ≥ (1− g′(δ))fP′(I)(x(X1,...,Xr+))− h′(δ),

where 0 ≤ g′(δ) ≤ 1 and h′(δ) ≥ 0,
with runtime T (δ). Then there exists an algorithm ALG that takes P′(I) and any δ > 0 as inputs, and outputs
a solution of P′(I) that satisfies

ALGP′(I) ≥ (1− g′(δ))OPTP′(I) − h′(δ)
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with runtime
r+m log2 m + λmλ + λr2

+mλr+ + mλr+T (δ).

Proof of Lemma 6. We will construct ALG explicitly. Now because every feasible solution z to P′(I)
corresponds to exactly one valid tuple, we can solve P′(I) by enumerating all valid tuples, and applying ALG′

to each valid tuple. It turns out that pre-sorting the vectors dj allows for more-efficient enumeration. Let
ALG take the following steps:

1. Sort dj for each j ∈ [r+]. This takes runtime r+m log2 m.

2. Enumerate all valid tuples with |X1| < λ, and record the unique corresponding feasible
solutions. We will show momentarily that when |X1| < λ, there is a unique corresponding feasible
solution, and as a result this step takes runtime λmλ.

3. Enumerate all valid tuples with |X1| = λ, and record the solution output by ALG′
P′(I) for

each such valid tuple. We will show that it takes runtime λr2
+mλr+ to enumerate all such valid

tuples, and then because there are at most mλr+ such valid tuples, the total runtime of this step is
λr2

+mλr+ + mλr+T (δ).

4. Output a solution that is recorded with the highest objective value in P′(I).
Therefore the total runtime of ALG is

r+m log2 m + λmλ + λr2
+mλr+ + mλr+T (δ).

Finally, let x∗
(X∗

1 ,...,X∗
r+) be an optimal solution of P′(I) where (X∗

1 , . . . , X∗
r+) is the valid tuple that it

corresponds to. Let x′
(X∗

1 ,...,X∗
r+) be the solution that ALG′

P′(I) outputs with input P′(I), valid tuple
(X∗

1 , . . . , X∗
r+

), and δ > 0. Then

ALGP′(I) ≥ fP′(I)(x′
(X∗

1 ,...,X∗
r+))

≥ (1− g′(δ))fP′(I)(x∗
(X∗

1 ,...,X∗
r+))− h′(δ)

= (1− g′(δ))OPTP′(I) − h′(δ).

It remains to analyze Steps 2 and 3 of ALG.

Step 2: Fix any valid tuple (X1, . . . , Xr+) such that |X1| < λ. Assume there exists a feasible solution z to
P′(I) that corresponds to the valid tuple, and let Z = {i ∈ [m] | zi = 1}. Then because |X1| = min{λ, |Z|} =
|Z| and X1 ⊂ Z, we have X1 = Z. Similarly, Xj = Z for all j ∈ [r+]. Therefore, there exists a feasible solution
to P′(I) that corresponds to (X1, . . . , Xr+) only if X1 = · · · = Xr+. There are at most

∑λ−1
i=1

(
m
i

)
≤ λmλ

such tuples. Moreover, there is a unique feasible solution z that corresponds to (X1, . . . , Xr+), namely zi = 1
for every i ∈ X1 and zi = 0 for every i /∈ X1. Thus, the runtime of enumerating all corresponding feasible
solutions is bounded by λmλ.

Step 3: Fix any valid tuple (X1, . . . , Xr+) such that |X1| = λ. Then by construction we must have zi = 1
for every i ∈ ∪jXj , and zi = 0 for every i ∈ ∪jX̂j . Therefore every feasible solution z that corresponds to
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(X1, . . . , Xr+) must lie in the following set:

{z ∈ {0, 1}m |zi = 1 ∀i ∈ ∪jXj ,

zi = 0 ∀i ∈ ∪jX̂j ,

1 ≤ e⊤z ≤ k}.

There are
(

m
λ

)r+ ≤ mλr+ tuples such that |X1| = λ. We enumerate all such tuples, and check each for
validity according to the following procedure:

0. From Step 1 of ALG, let πj : [m]→ [m] be a sorting of [m] according to dj such that dj,πj(1) ≥ · · · ≥
dj,πj(m).

1. Fix any given tuple (X1, . . . , Xr+). For each j ∈ [r+], let i(j) ∈ [m] be an index such that dj,i(j) ∈ Xj

and dj,i(j) ≤ dji for all dji ∈ Xj . Without loss of generality, if dj,i(j) = dji′ and dji′ /∈ Xj for some
index i′, we let πj(i(j)) > πj(i′) for tie-breaking in the sorting. Also, if dj,i(j) = dji′ and dji′ ∈ Xj for
some index i′, we let πj(i(j)) < πj(i′) for tie-breaking in the sorting. Then by our construction

X̂j = {i ∈ [m] \Xj | dji > min
i′∈Xj

{dji′}}

= {i ∈ [m] \Xj | dji > dj,i(j)}}

= {i ∈ [m] \Xj | πj(i) > πj(i(j))}.

Therefore Xj ∪ X̂j = {i ∈ [m] | πj(i) ≥ πj(i(j))}.

2. Note that
∑r+

j=1|Xj | = λr+. Therefore, in order to check whether | ∪j Xj | ≤ k, we just need to count
the number of overlaps among all Xj ’s. Set a counter c = 0 to count the overlaps. For each j ∈ [r+]
and for each i ∈ Xj , we check if πj′(i) ≥ πj′(i(j′)), and do the following:

• If πj′(i) < πj′(i(j′)), then we have i /∈ Xj′ ∪ X̂j′ . We do nothing in this case.

• If πj′(i) ≥ πj′(i(j′)) and πj′(i) ∈ Xj′ , then i appears in both Xj and Xj′ . Therefore we increase
c by 1.

• If πj′(i) ≥ πj′(i(j′)) and πj′(i) /∈ Xj′ , then we must have πj′(i) ∈ X̂j′ . Therefore (∪jXj)
⋂

(∪jX̂j) ̸=
∅, so we can terminate the process and declare that (X1, . . . , Xr+) is not a valid tuple.

We iterate all j ∈ [r+] and i ∈ Xj . Notice that c counts the number of overlaps (with multiplicity) of
elements in Xj , we have |∪j Xj | =

∑r+
j=1|Xj |−c = λr+−c. Therefore we can check if |∪j Xj | ≤ k. Also,

if the above procedure never encounters πj′(i) ∈ X̂j′ , then we have (∪jXj)
⋂

(∪jX̂j) = ∅. Therefore
this procedure allows us to check the validity of (X1, . . . , Xr+).

Because each dj′ is sorted, the above procedure takes a constant runtime for each j′ ∈ [r+], so the runtime
for each fixed j ∈ [r+] and i ∈ Xj is r+. Because

∑r+
j=1|Xj | = λr+, there are λr+ combinations of j ∈ [r+]

and i ∈ Xj . Therefore the runtime to check the validity is λr2
+ for any given tuple (X1, . . . , Xr+). Because

there are at most mλr+ such tuples, the runtime of enumerating all such tuples is λr2
+mλr+ .

■

Below we give the pseudo-code of the algorithm ALG in Lemma 6.
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Algorithm 5: Phase Two: Enumeration of Partial Solutions
Input: Instance of Problem P′(I) from Lemma 5, oracle ALG′ from Lemma 6, parameter δ > 0
Output: Solution x to P(I)

Set λ > 0 according to Eq. (6)

// Enumerate valid tuples with |Xj | < λ

for λ′ = 1 to λ− 1 do
for each X1 ⊂ [m] with 1 ≤ |X1| ≤ k do

Set x ∈ {0, 1}m where xi = 1 ⇐⇒ i ∈ X1; record (x, fP′(I)(x))
end

end

// Enumerate valid tuples with |Xj | = λ

for j ∈ [m] do
dj ← bj ⊙ (V u)
πj ← permutation sorting [m] by dj descending

end
for each tuple (X1, . . . , Xr+) where |Xj | = λ for all j do

for j ∈ [r+] do
i(j)← arg mini∈Xj

dj,i

X̂j ← {i ∈ [m] \Xj : πj(i) > πj(i(j))}
end
c← 0; valid← true
for j ∈ [r+] and i ∈ Xj do

for j′ ∈ [r+] do
if πj′(i) ≤ πj′(i(j′)) then c← c + 1
if πj′(i) ≤ πj′(i(j′)) and i /∈ Xj′ then valid← false; break

end
if not valid then break

end
if valid and c ≤ λr+ − k then

Let x be the output of ALG′ with inputs P(X) where valid tuple X = (X1, . . . , Xr+), and
parameter δ

record (x, fP′(I)(x))
end

end
return recorded x with maximum fP′(I)(x)

The consequence of this result is that we have reduced to the task of, for each valid tuple X = (X1, . . . , Xr+)
with |X1| = λ, solving P′(I) with the additional constraint that the solution must correspond to the valid
tuple, as stated in Problem P(X) below:
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max fP(X)(x) =
m∑

i=1
xifi

(∑r+
j=1 aijd⊤

j x

w′
i
⊤x

)
(P(X))

s.t. x ∈ {0, 1}m,

1 ≤ e⊤x ≤ k,

xi = 1 ∀i ∈ ∪jXj ,

xi = 0 ∀i ∈ ∪jX̂j .

F.3. Step 3: Linearization

In order to solve P(X), we define the following auxiliary problem P(X, t) for each t ∈ Rm
+ :

max fP(X,t)(x) =
m∑

i=1
xifi

(∑r+
j=1 aijd⊤

j x

ti

)
(P(X, t))

s.t. x ∈ {0, 1}m,

e⊤x ≤ k,

w′
i
⊤x ≤ ti ∀i ∈ [m],

xi = 1 ∀i ∈ ∪jXj ,

xi = 0 ∀i ∈ ∪jX̂j .

Note that we have dropped the constraint 1 ≤ e⊤x in P(X, t). This is inconsequential: because we assume
OPTP is positive, the solution x with all entries equal to zero is not an optimal solution to P. Indeed, the
only reason we have maintained the 1 ≤ e⊤x constraint until now has been to rule out notational edge cases
(such as dividing by zero).

We prove an important property regarding the relationship between optimal solutions of P(X) and those
of P(X, t).

Lemma 7. Fix any valid tuple X. Let t∗ ∈ arg maxt∈Rm
+

OPTP(X,t), and let x∗ be an optimal solution to
P(X, t∗). Then W ′x∗ = t∗, and x∗ is an optimal solution to P(X).

Proof of Lemma 7. First, we show that W ′x∗ = t∗. Suppose otherwise, and let t′ = W ′x∗. Then t′
i ≤ t∗

i for
every i ∈ [m] and t′

i < t∗
i for some i. Therefore

OPTP(X,t∗) =
m∑

i=1
x∗

i fi

(∑r+
j=1 aijd⊤

j x∗

t∗
i

)
<

m∑
i=1

x∗
i fi

(∑r+
j=1 aijd⊤

j x∗

t′
i

)
≤ OPTP(X,t′),

contradicting the definition of t∗.
Now we show that x∗ is an optimal solution to the P(X). For the sake of contradiction, suppose that x′

gives a higher objective value than x∗ to P(X), that is,

m∑
i=1

x′
ifi

(∑r+
j=1 aijd⊤

j x′

w′
i
⊤x′

)
>

m∑
i=1

x∗
i fi

(∑r+
j=1 aijd⊤

j x∗

w′
i
⊤x∗

)
= OPTP(X,t∗).
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Let t′ = Wx′. Then x′ is a feasible solution to P (X, t′). Therefore, we have

OPTP(X,t′) ≥
m∑

i=1
x′

ifi

(∑r+
j=1 aijd⊤

j x′

w′
i
⊤x′

)
> OPTP(X,t∗),

contradicting the definition of t∗. ■

Because t∗ = W ′x∗ and
∑m

j=1 wij ≤ 1 + γ for each i ∈ [m], we have t∗ ∈ [W ′
min, 1 + γ]m. Thus, from here

on we will only consider the problems P(X, t) with t ∈ [W ′
min, 1 + γ]m.

F.4. Step 4: Dimensionality Reduction and Discretization of Auxiliary Problems:

Lemma 7 shows that, in order to solve P(X), it is enough to solve for arg maxt∈Rm
+

OPTP(X,t). Below we
show that it suffices to solve the auxiliary problem P(X, t) for a smaller, discretized set of t’s.

Lemma 8. Suppose we are given an oracle ALG′ that takes P(X, t) with any t ∈ [W ′
min, 1 + γ]m and any

δ > 0 as inputs, and outputs a solution of P(X, t) that satisfies

ALG′
P(X,t) ≥ (1− g′(δ))OPTP(X,t) − h′(δ)

with runtime T (δ), where 0 ≤ g′(δ) ≤ 1 and h′(δ) ≥ 0. Then there exists an algorithm ALG that takes P(X)
and any δ > 0 as inputs, and outputs a solution of P(X) that satisfies

ALGP(X) ≥ (1− g′(δ))
((

1− g

(
(1 + γ)δ

W ′
min

))
OPTP(X) + kh

(
(1 + γ)δ

W ′
min

))
− h′(δ)

with runtime ⌈(
4(1 + γ)k

ϵW ′
min

)r+⌉
T (δ).

Proof of Lemma 8. Recall that we have known non-negative factorization W ′ = AB⊤, where A, B ∈ Rm×r+
≥0 .

First, we make the following observation on the scale of A and B:

Observation 3. There exists A′, B′ ∈ Rm×r+
≥0 where W ′ = A′B′⊤, such that ∥a′

i∥1 ≤ 1 + γ for every i ∈ [m]
and ∥b′

j∥1 = 1 for every j ∈ [r+].

Proof of Observation 3. We construct A′ and B′ explicitly. Let the rows of B′ be the rows of B that are
rescaled so that ∥bj∥1 = 1. That is, let b′

jk = bjk/
∑m

k′=1 bjk′ for every j ∈ [r+] and k ∈ [m]. Let the columns
of A′ be the columns of A that are rescaled accordingly. That is, let a′

ij = aij

∑m
k′=1 bjk′ for every i ∈ [m]

and j ∈ [r+]. Then we have a′
ijb′

jk = aijbjk. Therefore W ′ = A′B′⊤. Finally, since 1− γ ≤Wij/W ′
ij ≤ 1 + γ

and
∑m

j=1 wij = 1 for every i ∈ [m], we have
∑m

j=1 w′
ij ≤ 1 + γ for every i ∈ [m]. Therefore for every i ∈ [m],

we have

1 + γ ≥
m∑

j=1
w′

ij =
r+∑

j=1
a′

ij

m∑
k=1

b′
jk =

r+∑
j=1

a′
ij = ∥a′

i∥1.

■

By Observation 3, we may assume ∥ai∥1 ≤ 1 + γ for every i ∈ [m] and ∥bj∥1 = 1 for every j ∈ [r+] from
now on. Let

(8) Y = {B⊤x | x is a feasible solution to P′(I)} ⊂ Rr+ .
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We will partition the t-space [W ′
min, 1 + γ]m by partitioning Y . Let δ′ be the quantity

(9) δ′ = W ′
minδ

(1 + γ)
√

k
,

where the reason for this choice will be specified momentarily. Notice that ∥y∥2 ≤
√

k for every y ∈ Y . As
seen in the proof of Proposition 9, we can create a cover of a ball with radius

√
k in Rr+ using ⌈(4

√
k/δ′)r+⌉

number of balls with radius δ′/2. Therefore we can create a partition Y = {Y1, . . . , Yℓ} of Y such that
ℓ = ⌈(4

√
k/δ′)r+⌉, and ∥y − y′∥2 ≤ δ′ for every ℓ′ ∈ [ℓ] and y, y′ ∈ Yℓ′ .

Fix any row a⊤
i of A. For every ℓ′ ∈ [ℓ] and i, i′ ∈ Iℓ′ , we have∣∣∣∣ a⊤

i y

a⊤
i y′ − 1

∣∣∣∣ =
∣∣∣∣a⊤

i (y − y′)
a⊤

i y

∣∣∣∣
≤ ∥ai∥2∥y − y′∥2

|a⊤
i y|

≤ δ′(1 + γ)
√

k

W ′
min

.

Thus, for our particular choice of δ′, we have that |a⊤
i y/a⊤

i y′ − 1| ≤ δ for every ℓ′ ∈ [ℓ] and y, y′ ∈ Yℓ′ .
For every ℓ′ ∈ [ℓ], let Tℓ′ = {Ay | y ∈ Yℓ′} ⊂ Rm. Then for every ℓ′ ∈ [ℓ] and t, t′ ∈ Tℓ′ , we have that

|(ti/t′
i)− 1| ≤ δ for every i ∈ [m]. Fix any t1 ∈ T1, . . . , tℓ ∈ Tℓ. The algorithm ALG will use the given oracle

ALG′ to obtain a solution for each P(X, tℓ′), and then output the solution that has the highest objective
value of P(X, tℓ′). That is,

ALGP(X) = max
ℓ′∈[ℓ]

ALG′
P(X,tℓ′ ).

Because ℓ = ⌈(4
√

k/δ)r+⌉ = ⌈(4(1 + γ)k/ϵW ′
min)r+⌉, the runtime of ALG is

⌈(4(1 + γ)k/ϵW ′
min)r+⌉T (δ).

Finally, we prove the performance guarantee for ALG. Let t∗ ∈ arg maxt∈Rm
+

OPTP(X,t). Assume t∗ ∈ Tℓ′ .
Then |(t∗

i /(tℓ′)i)− 1| ≤ δ. Let x∗ be the corresponding optimal solution to P(X, t∗). Then by Lemma 7, x∗

is an optimal solution to P(X). Let x′ be an optimal solution of P(X, tℓ′). Because tℓ′ ∈ [W ′
min, 1 + γ]m,

we have
∑r+

j=1 aijd⊤
j x∗/(tℓ′)i = w′

i
⊤

x∗/(tℓ′)i ≤ (1 + γ)/W ′
min. Also, since fi(x− ϵ) ≥ (1− g(ϵ))fi(x)− h(ϵ)

for all x, we have fi(x + ϵ) ≤ (fi(x) + h(ϵ))/(1 − g(ϵ)) for all x. As a consequence of Lemma 7, we have
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OPTP(X) = OPTP(X,t∗). Then

OPTP(X) = OPTP(X,t∗)

=
m∑

i=1
x∗

i fi

(∑r+
j=1 aijd⊤

j x∗

t∗
i

)

≤
m∑

i=1
x∗

i fi

(
(1 + δ)

∑r+
j=1 aijd⊤

j x∗

(tℓ′)i

)

≤

∑m
i=1 x∗

i fi

(∑r+
j=1

aijd⊤
j x∗

(tℓ′ )i

)
+ kh(δ(1 + γ)/W ′

min)

1− g(δ(1 + γ)/W ′
min)

≤
OPTP(X,tℓ′ ) + kh(δ(1 + γ)/W ′

min)
1− g(δ(1 + γ)/W ′

min) .

Rearranging the above, we have

OPTP(X,tℓ′ ) ≥ (1− g(δ(1 + γ)/W ′
min))OPTP(X) − kh(δ(1 + γ)/W ′

min).

Therefore,

ALGP(X) ≥ ALG′
P(X,tℓ′ )

≥ (1− g′(δ))OPTP(X,tℓ′ ) − h′(δ)

≥ (1− g′(δ))
((

1− g

(
(1 + γ)δ

W ′
min

))
OPTP(X) − kh

(
(1 + γ)δ

W ′
min

))
− h′(δ).

■

Below we give the pseudo-code of the algorithm ALG in Lemma 8.
Algorithm 6: Phase Two: Discretization of Auxiliary Problems

Input: Instance of Problem P(X), oracle ALG′ from Lemma 8, parameter δ > 0
Output: Solution x to P(X)

// Discretize the space of auxiliary variable
Set δ′ > 0 according to Eq. (9)
Construct maximal (δ′/2)-separated set C ⊂ B(0,

√
k) with |C| = ⌈(4

√
k/δ′)r+⌉

Let Y = {Y1, . . . , Yℓ} ← {B(c, δ′/2) : c ∈ C}

// Solve each discretized auxiliary problem
Set δ1 ← δ and δ2 ← kδ

for ℓ′ = 1 to ℓ do
Tℓ′ ← {Ay : y ∈ Yℓ′}
Choose arbitrary tℓ′ ∈ Tℓ′

Let x be the output of ALG′ with inputs P(X, tℓ′) and parameters δ1, δ2

Record (xℓ′ , fP(X,tℓ′ )(xℓ′))
end

return arg maxxℓ′ fP(X,tℓ′ )(xℓ′) among recorded solutions
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F.5. Step 5: Complete Linearization of Auxiliary Problems

Lemma 8 shows that, to approximately solve P(X), it suffices to construct an oracle that approximately
solves P(X, t) for any given t ∈ [W ′

min, 1 + γ]m. Below we give such an oracle. Let ci = ai/ti ∈ Rr+
≥0 for each

i ∈ [m]. Then P(X, t) can be equivalently formulated as

max fP(X,t)(x) =
m∑

i=1
xifi

 r+∑
j=1

cijd⊤
j x

(P(X, t))

s.t. x ∈ {0, 1}m,

e⊤x ≤ k,

w′
i
⊤x ≤ ti ∀i ∈ [m],

xi = 1 ∀i ∈ ∪jXj ,

xi = 0 ∀i ∈ ∪jX̂j .

To solve P(X, t), we partition the space of possible values (d⊤
1 x, . . . , d⊤

r+
x) ∈ Rr+ , as well as the space of

the objective value fP(X,t)(x).

Lemma 9. Fix any t ∈ [W ′
min, 1 + γ]m. Suppose we are given an oracle with runtime T (δ1, δ2) that takes

P(X, t), any θ = (θ1, . . . , θr+) ∈ Rr+ , any ζ ≥ 0, and any δ1, δ2 > 0 as inputs, and either
1. Scenario one: correctly declares that there is no feasible x to P(X, t) such that d⊤

j x ≥ θj for every
j ∈ [r+] and

∑m
i=1 xifi(c⊤

i θ) ≥ ζ, or

2. Scenario two: outputs a feasible x to P(X, t) such that d⊤
j x + δ1 ≥ θj for every j ∈ [r+] and∑m

i=1 xifi(c⊤
i θ) + δ2 ≥ ζ.

Then there exists an algorithm ALG that satisfies

ALGP(X,t) ≥
(

1− g

(
δ1(1 + γ)

W ′
min

))
(OPTP(X,t) − 2δ2)− kh

(
δ1(1 + γ)

W ′
min

)
with runtime

⌈((V u)max −min{0, (V u)min)}/δ1⌉r+ ·
⌈

k max
i∈[m]
{fi((V u)max)}/δ2

⌉
T (δ1, δ2).

Proof of Lemma 9. Let (V u)min be the minimum entry of V u (possibly negative). Because ∥bj∥1 = 1 and
dj = bj ⊙ (V u) for every j ∈ [r+], we have d⊤

j x∗ ∈ [min{0, (V u)min}, (V u)max] for every j ∈ [r+]. Also,
because each fi is non-decreasing, OPTP(X,t) ∈ [0, k maxi∈[m]{fi((V u)max)}]. Similar to the proof of Lemma
8, we will create a partition of the space of possible values (d⊤

1 x, . . . , d⊤
r+

x) ∈ Rr+ , as well as the space of the
objective value fP(X,t)(x). We then show that it is sufficient to solve P(X, t) in each subset of the partition.
Let ∆ℓ = min{0, (V u)min}+ δ1(ℓ− 1) for ℓ = 1, . . . , ⌈((V u)max −min{0, (V u)min})/δ1⌉. Let ∆′

s = δ2(s− 1)
for s = 1, . . . , ⌈k maxi∈[m]{fi((V u)max)}/δ2⌉. Consider all tuples (ℓ1, . . . , ℓr+ , s). There are in total

⌈((V u)max −min{0, (V u)min})/δ1⌉r+ ·
⌈

k max
i∈[m]
{fi((V u)max)}/δ2

⌉
such tuples. Moreover, there exists a tuple (ℓ∗

1, . . . , ℓ∗
r+

, s∗) such that ∆ℓ∗
i
≤ x∗

i ≤ ∆ℓ∗
i

+1 for each i ∈ [m] and
∆′

s∗ ≤ OPTP(X,t) ≤ ∆′
s∗+1.
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For each tuple (ℓ1, . . . , ℓr+ , s), our desired algorithm uses the given oracle to determine whether there
exists a feasible x to P(X, t) that satisfies the conditions in scenario two with θi = ∆ℓi

for each i ∈ [r+] and
ζ = ∆′

s. Then our desired algorithm returns the x with the highest objective value of P(X, t) among all
tuples. Note that x∗ satisfies the conditions in scenario two on the tuple (ℓ∗

1, . . . , ℓ∗
r+

, s∗). Therefore the given
oracle would return some feasible x′ to P(X, t) that satisfies the conditions in scenario two with θi = ∆ℓ∗

i
for

each i ∈ [r+] and ζ = ∆′
s∗ . Notice that cij = aij/ti ≤ (1 + γ)/W ′

min. Then by the conditions in scenario two
we have

ALGP(X,t) ≥
m∑

i=1
x′

ifi

 r+∑
j=1

cijd⊤
j x′


≥

m∑
i=1

x′
ifi

 r+∑
j=1

cij(θj − δ1)


≥

m∑
i=1

x′
ifi

 r+∑
j=1

cijθj − δ1(1 + γ)/W ′
min


≥ (1− g(δ1(1 + γ)/W ′

min))
m∑

i=1
x′

ifi

 r+∑
j=1

cijθj

− kh(δ1(1 + γ)/W ′
min)

≥ (1− g(δ1(1 + γ)/W ′
min))(∆′

s∗ − δ2)− kh(δ1(1 + γ)/W ′
min)

≥ (1− g(δ1(1 + γ)/W ′
min))(OPTP(X,t) − 2δ2)− kh(δ1(1 + γ)/W ′

min),

where the second and the fifth inequalities follow from the conditions in scenario two, and the last inequality
follows since ∆′

s∗ ≤ OPTP(X,t) ≤ ∆′
s∗+1.

Because there are in total

⌈((V u)max −min{0, (V u)min})/δ1⌉r+ ·
⌈

k max
i∈[m]
{fi((V u)max)}/δ2

⌉
number of tuples (ℓ1, . . . , ℓr+ , s), the runtime of our algorithm is

⌈((V u)max −min{0, (V u)min})/δ1⌉r+ ·
⌈

k max
i∈[m]
{fi((V u)max)}/δ2

⌉
T (δ1, δ2).

■

Below we give the pseudo-code of the algorithm ALG in Lemma 9.
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Algorithm 7: Phase Two: Complete Linearization of Auxiliary Problems
Input: Instance of Problem P(X, t), oracle from Lemma 9, parameters δ1, δ2 > 0
Output: Solution x to P(X, t)

// Discretize value and objective spaces
Let νmin ← min{0, (V u)min} and νmax ← (V u)max

Let L← ⌈(νmax − µmin)/δ1⌉ and S ← ⌈k ·maxi∈[m] fi(νmax)/δ2⌉
for ℓ = 1 to L do

∆ℓ ← νmin + δ1(ℓ− 1)
end
for s = 1 to S do

∆′
s ← δ2(s− 1)

end

// Enumerate and solve linearized problems
for each tuple (ℓ1, . . . , ℓr+ , s) where ℓi ∈ [L] and s ∈ [S] do

Set θi ← ∆ℓi for each i ∈ [r+] and ζ ← ∆′
s

Run oracle from Lemma 9 with inputs P(X, t), value tuple (θ1, . . . , θr+ , ζ), and parameters δ1, δ2

if oracle returns scenario two with feasible solution x then
Record (x, fP(X,t)(x))

end
end

return arg maxx fP(X,t)(x) among recorded solutions

F.6. Step 6: Approximation of Linearized Auxiliary Problems via LP Rounding

Lemma 9 shows that, to solve P (X, t) for any given t ∈ [W ′
min, 1+γ]m, it is enough to give an oracle described

in Lemma 9. Similar to the idea of enumerating partial solutions by constructing valid tuples based on the
values of each dj , we further construct index sets based on the values of fi(c⊤

i θ) and enumerate all possible
index sets. Recall that via the valid tuple (X1, . . . , Xr+), we have already fixed at least λ indices of any
feasible solution to P(X, t) to be equal to 1, namely the indices in ∪jXj . Fix

(10) λ′ = ⌈(2r+ + 2) max
i∈[m]
{fi((V u)max)}/ϵ⌉.

Let X ′ ⊂ [m] \ (∪jXj) ∪ (∪jX̂j) be an index set such that 0 ≤ |X ′| ≤ λ′. Let

(11) X̂ ′ = {i ∈ [m] \X ′ ∪ (∪jXj) ∪ (∪jX̂j) | fi(c⊤
i θ) > min

i′∈X′
{fi′(c⊤

i′ θ)}}.

In words, X̂ ′ consists of the indices outside of X ′∪ (∪jXj)∪ (∪jX̂j) whose corresponding values of fi(c⊤
i′ θ) are

strictly greater than the minimum value of fi(c⊤
i θ) across indices in X ′. Then every feasible solution z to P(X, t)

corresponds to an index set X ′ in the following way: let Z = {i ∈ [m]\ (∪jXj)∪ (∪jX̂j) | zi = 1}. We define
X ′ ⊂ Z to be the set of indices i ∈ Z such that fi(c⊤

i θ) is among the min{λ′, |Z|} highest values in Z. That
is, let π′ : [|Z|]→ Z be a sorting of Z according to fi(c⊤

i θ) such that fπ′(1)(c⊤
π′(1)θ) ≥ · · · ≥ fπ′(|Z|)(c⊤

π′(|Z|)θ).
Then X ′ = {π′(1), . . . , π′(min{λ′, |Z|})}. Similar to before, if z corresponds to X ′, we must have zi = 1 for
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i ∈ X ′ and zi = 0 for i ∈ X̂ ′.
As in Lemma 6, the notion of correspondence to index sets forms a partition of the set of feasible solutions

to P(X, t). Therefore, in order to give an oracle described in Lemma 9, it suffices to give an oracle described
in Lemma 9 separately for each subset of this partition. This is formally stated in the following result:

Observation 4. Suppose we are given an oracle with runtime T (δ1, δ2) that takes P(X, t), any θ = (θ1, . . . , θr+) ∈
Rr+ , any ζ ≥ 0, any δ1, δ2 > 0, and any index set X ′ ⊂ [m] \ (∪jXj) ∪ (∪jX̂j) such that 0 ≤ |X ′| ≤ λ′ as
inputs, and either

1. Scenario one: correctly declares that there is no feasible x to P(X, t) that corresponds to X ′ such that
d⊤

j x ≥ θj for every j ∈ [r+] and
∑m

i=1 xifi(c⊤
i θ) ≥ ζ, or

2. Scenario two: outputs a feasible x to P(X, t) that corresponds to X ′ such that d⊤
j x + δ1 ≥ θj for every

j ∈ [r+] and
∑m

i=1 xifi(c⊤
i θ) + δ2 ≥ ζ.

Then there exists an oracle described in Lemma 9 with runtime λ′mλ′
T (δ1, δ2).

Proof of Observation 4. Because every feasible solution x to P(X, t) corresponds to exactly one index set
X ′ ⊂ [m] \ (∪jXj) ∪ (∪jX̂j) such that 0 ≤ |X ′| ≤ λ′, we can give an oracle described in Lemma 9 by
enumerating all such index sets X ′ and applying the oracle in Observation 4.

More specifically, for the oracle described in Lemma 9 with inputs θ, ζ, δ1, δ2:

• If the oracle in Observation 4 outputs an x in scenario two with inputs θ, ζ, δ1, δ2, X ′ for some X ′, then
the oracle described in Lemma 9 also outputs this x in scenario two.

• If the oracle in Observation 4 declares scenario one with inputs θ, ζ, δ1, δ2, X ′ for all X ′, then the oracle
described in Lemma 9 also declares scenario one.

We can enumerate all index sets X ′ ⊂ [m] \ (∪jXj) ∪ (∪jX̂j) such that 0 ≤ |X ′| ≤ λ′ by simply enumerating
all combinations of |X ′| indices from [m] \ (∪jXj) ∪ (∪jX̂j). Because there are at most

∑λ′

k=0
(

m
λ′

)
≤ λ′mλ′

such index sets X ′, the runtime of the oracle described in Lemma 9 is λ′mλ′
T (δ1, δ2). ■

By Observation 4, it suffices to give an oracle as described. Below we give such an oracle.
First, suppose |X ′| < λ′. Assume there exists a feasible solution z to P(X, t) that corresponds to X ′. Let

Z = {i ∈ [m] \ (∪jXj) ∪ (∪jX̂j) | zi = 1}. Then because |X ′| = min{λ′, |Z|} = |Z| and X ′ ⊂ Z, we have
X ′ = Z. Therefore, there is a unique feasible solution z of P(X, t) that corresponds to X ′, namely zi = 1 for
every i ∈ X ′ ∪ (∪jXj) and zi = 0 for every i /∈ X ′ ∪ (∪jXj). Therefore, if |X ′| < λ′, the oracle in Observation
4 can directly check this unique feasible solution of P(X, t) that corresponds to X ′, and outputs the correct
scenario accordingly.

From now on, we assume |X ′| = λ′. Fix any θ ∈ Rr+ , any ζ ∈ R+, any δ1, δ2 > 0, and any X ′. The oracle
essentially needs to determine the existence of a feasible binary solution to a system of linear inequalities,
which is NP-hard in general. However, the linear constraints of P(X, t) lie in a lower-dimensional subspace, a
structure we can exploit by solving a relaxation of the system, obtained by replacing binary variables with
continuous ones, and rounding its solution back to a binary solution. Because of the rounding, it is possible
that the values (d⊤

1 x, . . . , d⊤
r+

x) and
∑m

i=1 xifi(c⊤
i θ) of the rounded solution are out of the desired ranges.

However, the valid tuple X and the index set X ′ we fixed before ensures that the gaps between the values
and the desired ranges are within small constants.
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We define a polyhedron PH ⊂ Rm as follows:

(PH)

r+∑
j=1

aij b⊤
j x ≤ ti for i = 1, . . . , m,

e⊤x ≤ k,

d⊤
j x ≥ θj for j = 1, . . . , r+,

m∑
i=1

xi fi(c⊤
i θ) ≥ ζ,

xi = 1 for i ∈
(⋃

j

Xj

)
∪X ′,

xi = 0 for i ∈
(⋃

j

X̂j

)
∪ X̂ ′,

xi ∈ [0, 1] for i /∈
(⋃

j

Xj

)
∪
(⋃

j

X̂j

)
∪X ′ ∪ X̂ ′.

Then PH is a polyhedron in Rm defined by at most 3m + r+ + 2 inequalities. Let LP(m, n) be the runtime
of solving a linear program with m variables and n constraints. Then checking whether PH is non-empty
and return a point in PH if PH is non-empty can be done in runtime LP(m, 3m + r+ + 2). For more on the
runtime of solving a linear program, we refer the readers to e.g. Khachiyan (1980), Grötschel et al. (1981)
(ellipsoid methods) and Nesterov and Nemirovskii (1994), Vaidya (1996) (interior point methods). In what
follows we assume that PH ̸= ∅, otherwise the oracle outputs scenario one.

Lemma 10. If PH ≠ ∅, then we can find a point z ∈ PH with at most 2r+ + 2 fractional components in
runtime LP(m, 3m + r+ + 2) + LP(m, 2m + 2r+ + 2).

Proof of Lemma 10. Let z∗ ∈ PH be an (arbitrary) point found in runtime LP(m, 3m + r+ + 2). Let
PH(z∗) ⊂ Rm−|(∪jXj)∪(∪jX̂j)∪X′∪X̂′| be the polyhedron on variable y, where the index set of y is taken to
be Iy = [m] \ (∪jXj) ∪ (∪jX̂j) ∪X ′ ∪ X̂ ′, with the following constraints:

(PH(z∗))

∑
i∈Iy

bji yi ≤
∑
i∈Iy

bji z∗
i for j = 1, . . . , r+,

∑
i∈Iy

yi ≤
∑
i∈Iy

z∗
i ,

∑
i∈Iy

dji yi ≥ θj −
∑

i∈(
⋃

j
Xj)∪X′

dji for j = 1, . . . , r+,

∑
i∈Iy

yi fi(c⊤
i θ) ≥ ζ −

∑
i∈(
⋃

j
Xj)∪X′

fi(c⊤
i θ),

yi ∈ [0, 1] for i ∈ Iy.

Note that PH(z∗) ̸= ∅ since the projection of z∗ on R|Iy| is in PH(z∗). Because PH(z∗) has 2r+ + 2
linear inequalities other than the inequalities yi ∈ [0, 1] for i ∈ Iy, we can compute a vertex y∗ of PH(z∗)
with at most 2r+ + 2 fractional components with runtime LP(m, 2m + 2r+ + 2) (see a standard textbook on
linear programming, e.g., Schrijver (1998)).
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Let z ∈ [0, 1]m where

zi =


1 if i ∈ (∪jXj) ∪X ′

0 if i ∈ (∪jX̂j) ∪ X̂ ′

y∗
i if i ∈ Iy

.

Then z has at most 2r+ + 2 fractional components. We show that z ∈ PH. Because zi = z∗
i = 1 for

i ∈ (∪jXj) ∪X ′ and zi = z∗
i = 0 for i ∈ (∪jX̂j) ∪ X̂ ′, the last three sets of constraints of PH is satisfied. By

the first set of constraints of PH(z∗) we have
∑

i∈Iy
bjizi ≤

∑
i∈Iy

bjiz
∗
i . Because aij ≥ 0 for every i, j, the

first set of constraints of PH is satisfied. Similarly the second constraint of PH is also satisfied. By the third
set of constraints of PH(z∗) we have

d⊤
j z =

∑
i∈(∪jXj)∪X′

dji +
∑
i∈Iy

djizi ≥
∑

i∈(∪jXj)∪X′

dji +

θj −
∑

i∈(∪jXj)∪X′

dji

 = θj ,

so the third set of constraints of PH is satisfied. Similarly the fourth constraint of PH is also satisfied.
Therefore z ∈ PH is the desired point. ■

Let z be the point obtained in Lemma 10. Then z satisfies all the constraints of P(X, t) except the
integrality constraints. We round z down to obtain a feasible solution: let z̄ ∈ {0, 1}m where z̄i = ⌊zi⌋ for
each i. Notice that since w′

ij > 0 for every i, j, we have e⊤z̄ ≤ e⊤z ≤ k and w′
i
⊤

z̄ ≤ w′
i
⊤

z ≤ ti for every
i ∈ [m]. Therefore z̄ is feasible to P(X, t). Moreover, since z̄ = 1 for i ∈ X ′ and z̄ = 0 for i ∈ X̂ ′, we have
that z̄ corresponds to X ′.

In the final step, we show that by setting λ, λ′ appropriately, z̄ satisfies the conditions in scenario two of
Observation 4, hence completing the oracle in Observation 4.

Lemma 11. Set λ = ⌈(2r+ + 2)(V u)max/δ1⌉ and λ′ = ⌈(2r+ + 2)k maxi∈[m]{fi((V u)max)}/δ2⌉. Then
d⊤

j z̄ + δ1 ≥ θj for every j ∈ [r+], and
∑m

i=1 z̄ifi(c⊤
i θ) + δ2 ≥ ζ.

Proof of Lemma 11. Because z ∈ PH, we have d⊤
j z ≥ θj for every j ∈ [r+] and

∑m
i=1 zifi(c⊤

i θ) ≥ ζ. Fix
j ∈ [r+] and let ℓ ∈ Xj be an index where djℓ = minℓ′∈Xj{djℓ′}. Then since |Xj | = λ, we have

d⊤
j z ≥

∑
ℓ′∈Xj

djℓ′zℓ′ ≥ λdjℓ.

On the other hand, z̄ is obtained by rounding z down. Notice that zℓ′ ∈ {0, 1} for all ℓ′ ∈ Xj ∪ X̂j , that is,
for all ℓ′ such that djℓ′ > djℓ. Therefore for all ℓ′ such that djℓ′ > djℓ, we have zℓ′ = z̄ℓ′ . By Lemma 10, z

has at most 2r+ + 2 fractional components. Therefore, because θj ≤ d⊤
j z ≤ (V u)max, we have

d⊤
j z̄ ≥ d⊤

j z − (2r+ + 2)djℓ

≥ d⊤
j z − (2r+ + 2)d⊤

j z/λ

≥ θj − (2r+ + 2)(V u)max/λ

≥ θj − δ1.
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Similarly, let p ∈ X ′ be an index where fp(c⊤
p θ) = minp′∈X′{fp′(c⊤

p′θ)}. Then since |X ′| = λ′, we have

m∑
i=1

zifi(c⊤
i θ) ≥

∑
p′∈X′

zp′fp′(c⊤
p′θ) ≥ λ′fp(c⊤

p θ).

On the other hand, z̄ is obtained by rounding z down. Notice that zp′ ∈ {0, 1} for all p′ ∈ X ′ ∪ X̂ ′, that is,
for all p′ such that fp′(c⊤

p′θ) > fp(c⊤
p θ). Therefore for all p′ such that fp′(c⊤

p′θ) > fp(c⊤
p θ), we have zℓ′ = z̄ℓ′ .

By Lemma 10 z has at most 2r+ + 2 fractional components. Therefore, because ζ ≤
∑m

i=1 zifi(c⊤
i θ) ≤

k maxi∈[m]{fi((V u)max)},

m∑
i=1

z̄ifi(c⊤
i θ) ≥

m∑
i=1

zifi(c⊤
i θ)− (2r+ + 2)fp(c⊤

p θ)

≥
m∑

i=1
zifi(c⊤

i θ)− (2r+ + 2)
m∑

i=1
zifi(c⊤

i θ)/λ′

≥ ζ − (2r+ + 2)k max
i∈[m]
{fi((V u)max)}/λ′

≥ ζ − δ2.

■

Below we give the pseudo-code of the oracle described in Lemma 9.
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Algorithm 8: Phase Two: Approximation of Linearized Auxiliary Problems
Input: Instance of Problem P(X, t), thresholds θ ∈ Rr+ , ζ ∈ R+, parameters δ1, δ2 > 0
Output: One of two scenarios:

1. Scenario 1: Certify no feasible x to P(X, t) satisfies d⊤
j x ≥ θj ∀j ∈ [r+] and

∑m
i=1 xifi(c⊤

i θ) ≥ ζ

2. Scenario 2: Return feasible x to P(X, t) with d⊤
j x + δ1 ≥ θj ∀j ∈ [r+] and

∑m
i=1 xifi(c⊤

i θ) + δ2 ≥ ζ

Set λ′ > 0 according to Eq. (10)
LetM← [m] \ (∪jXj) ∪ (∪jX̂j)

// Check small solutions
for each X ′ ⊂M with 0 ≤ |X ′| ≤ λ′ − 1 do

Set X̂ ′ according to Eq. (11)
Define z ∈ {0, 1}m: zi = 1 if i ∈ X ′ ∪ (∪jXj), else zi = 0
if z feasible and satisfies thresholds with slack (δ1, δ2) then

return Scenario 2 with solution z

end
end

// Solve via LP rounding for larger solutions
for each X ′ ⊂M with |X ′| = λ′ do

Construct polyhedron PH according to Eq. (PH)
if PH ̸= ∅ then

Choose arbitrary z∗ ∈ PH

Construct PH(z∗) according to Eq. (PH(z∗))
Compute vertex y∗ of PH(z∗) with ≤ 2r+ + 2 fractional components
Set Iy ←M\ (X ′ ∪ X̂ ′)

Define z ∈ [0, 1]m: zi =


1 if i ∈ (∪jXj) ∪X ′

0 if i ∈ (∪jX̂j) ∪ X̂ ′

y∗
i if i ∈ Iy

return Scenario 2 with solution z
end

end
return Scenario 1

F.7. Completing the Proof

Finally, we analyze our algorithm’s overall performance and runtime. Let δ1 = ϵ and δ2 = kϵ, and in order
to apply Lemma 11, we set λ = (2r+ + 2)(V u)max/ϵ and λ′ = (2r+ + 2) maxi∈[m]{fi((V u)max)}/ϵ. We will
treat the performance guarantee and runtime analysis separately.

Performance Guarantee: Let
cϵ,γ,W ′

min
= (1 + γ)ϵ

W ′
min

.
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The algorithm ALG (for solving P(X, t)) in Lemma 9 satisfies

ALGP(X,t) ≥
(

1− g

(
δ1(1 + γ)

W ′
min

))
(OPTP(X,t) − 2δ2)− kh

(
δ1(1 + γ)

W ′
min

)
= (1− g(cϵ,γ,W ′

min
))OPTP(X,t) − k(2ϵ(1− g(cϵ,γ,W ′

min
)) + h(cϵ,γ,W ′

min
)).

This gives the ALG′ (for solving P(X, t)) in Lemma 8 with

g′(ϵ) = g(cϵ,γ,W ′
min

)

and
h′(ϵ) = k(2ϵ(1− g(cϵ,γ,W ′

min
)) + h(cϵ,γ,W ′

min
)).

Therefore, the algorithm ALG (for solving P(X)) in Lemma 8 satisfies

ALGP(X) ≥ (1− g′(ϵ))((1− g(cϵ,γ,W ′
min

))OPTP(X) + kh(cϵ,γ,W ′
min

))− h′(ϵ)

= (1− g(cϵ,γ,W ′
min

))((1− g(cϵ,γ,W ′
min

))OPTP(X) + kh(cϵ,γ,W ′
min

))

− k(2ϵ(1− g(cϵ,γ,W ′
min

)) + h(cϵ,γ,W ′
min

))

= (1− g(cϵ,γ,W ′
min

))2OPTP(X) − k(2ϵ(1− g(cϵ,γ,W ′
min

)) + g(cϵ,γ,W ′
min

)h(cϵ,γ,W ′
min

)).

Therefore, the algorithm ALG (for solving P′(I)) in Lemma 6 satisfies

ALGP′(I) ≥ (1− g(cϵ,γ,W ′
min

))2OPTP′(I) − k(2ϵ(1− g(cϵ,γ,W ′
min

)) + g(cϵ,γ,W ′
min

)h(cϵ,γ,W ′
min

)).

Finally, we apply Lemma 5 by plugging in 1 − α = (1 − g(cϵ,γ,W ′
min

))2 and β = −k(2ϵ(1 − g(cϵ,γ,W ′
min

)) +
g(cϵ,γ,W ′

min
)h(cϵ,γ,W ′

min
)). This gives

ALGP(I) ≥ (1− g(2γ(V u)max))2(1− g(cϵ,γ,W ′
min

))2OPTP(I)

− k(1− g(2γ(V u)max))(2ϵ(1− g(cϵ,γ,W ′
min

)) + g(cϵ,γ,W ′
min

)h(cϵ,γ,W ′
min

)

+ (1− g(cϵ,γ,W ′
min

))2h(2γ(V u)max) + h(2γ(V u)max)).

Runtime Analysis: By Lemma 10, we give an oracle described in Observation 4 with runtime

TLP := LP(m, 3m + r+ + 2) + LP(m, 2m + 2r+ + 2).

Therefore, by Observation 4, we give an oracle described in Lemma 9 with runtime

λ′mλ′
TLP.

Therefore, the algorithm ALG′ (for solving P(X, t)) in Lemma 8 has runtime

⌈((V u)max −min{0, (V u)min})/δ1⌉r+ ·
⌈

k max
i∈[m]
{fi((V u)max)}/δ2

⌉
· λ′mλ′

TLP

= ⌈((V u)max −min{0, (V u)min})/ϵ⌉r+ ·
⌈

max
i∈[m]
{fi((V u)max)}/ϵ

⌉
· λ′mλ′

TLP.
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Therefore, the algorithm ALG′ (for solving P(X)) in Lemma 6 has runtime⌈(
4(1 + γ)k

ϵW ′
min

)r+⌉
· ⌈((V u)max −min{0, (V u)min})/ϵ⌉r+ ·

⌈
max
i∈[m]
{fi((V u)max)}/ϵ

⌉
· λ′mλ′

TLP.

Finally, by Lemma 6, our algorithm’s runtime is

r+m log2 m + λmλ + λr2
+mλr+

+
⌈(

4(1 + γ)k
ϵW ′

min

)r+⌉
·
⌈

(V u)max −min{0, (V u)min}
ϵ

⌉r+

·
⌈maxi∈[m]{fi((V u)max)}

ϵ

⌉
· λ′mλr++λ′

TLP.

Below we give the pseudo-code of our phase two algorithm in Proposition 10.
Algorithm 9: Phase Two

Input: Attention matrix W = softmax(QK⊤) ∈ Rn×n
+ , low-rank approximation W ′ ∈ Rn×n

+ with
factorization W ′ = AB⊤ and element wise guarantee 1− γ ≤Wij/W ′

ij ≤ 1 + γ, value matrix
V ∈ Rn×dv , user vector u ∈ Rdv , maximum number of recommended items k, candidate
index set I, parameter ϵ > 0.

Output: Solution x to Problem (Main).

Construct the instance of Problem (P(I)) from the inputs

// Low Non-negative Rank Approximation
Form the instance of Problem (P′(I)) by replacing W with W ′ in (P(I))

// Enumeration of Partial Solutions
x← Run Algorithm 5 on instance (P′(I)) with parameter ϵ, which internally invokes:

// Discretization of Auxiliary Problems
▷ Algorithm 6 with Input: Instance (P(X)), parameter ϵ; Calls: Algorithm 7

// Complete Linearization of Auxiliary Problems
▷ Algorithm 7 with Input: Instance P(X, tℓ′), parameters δ1 ← ϵ, δ2 ← kϵ; Calls: Algorithm 8

// Approximation of Linearized Auxiliary Problems via LP Rounding
▷ Algorithm 8 with Input: Instance P(X, t), thresholds (θ1, . . . , θr+ , ζ), parameters δ1 ← ϵ,
δ2 ← kϵ

return x
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